Что такое нуклеотид в биологии?

Роль нуклеотидов в организме

Нуклеотиды в клетке выполняют ряд важнейших функций:

• используются в качестве структурных блоков для нуклеиновых кислот (нуклеотиды пуринового и пиримидинового рядов);• участвуют во многих обменных процессах в клетке;• входят в состав АТФ – главного источника энергии в клетках;• выступают в роли переносчиков восстановительных эквивалентов в клетках (НАД+, НАДФ+, ФАД, ФМН);• выполняют функцию биорегуляторов;• могут рассматриваться как вторые вестники внеклеточного регулярного синтеза (например, цАМФ или цГМФ).

Нуклеотид – это мономерная единица, образующая более сложные соединения – нуклеиновые кислоты, без которых невозможна передача генетической информации, ее хранение и воспроизведение. Свободные нуклеотиды являются главными компонентами, участвующими в сигнальных и энергетических процессах, поддерживающих нормальную жизнедеятельность клеток и организма в целом.

Чем РНК отличается от ДНК

Большинство из вас слышали о трехбуквенных аббревиатурах ДНК и РНК. Некоторые из вас могут даже знать, к чему они относятся. Дезоксирибонуклеиновая кислота (ДНК) часто упоминается в связи с тем, что она в буквальном смысле диктует дальнейшее развитие организма.

Рибонуклеиновая кислота (РНК) является менее популярной аббревиатурой, чем ДНК, так как она не в центре внимания, но она так же важна.

Хотя между этими двумя молекулами есть много общего (да, они являются молекулами), их различия гораздо более интересны, ведь именно в этом кроются их основные функции.

По данным Национальной медицинской библиотеки США, ДНК каждого человека состоит из трех миллиардов фундаментальных единиц. Кроме того, более 99 процентов этих единиц одинаковы для всех людей

Другими словами, посмотрите вокруг и обратите внимание, насколько мы все разные. Только 1% из трех миллиардов достаточно, чтобы сделать нас уникальными во многих отношениях

Эти фундаментальные блоки в последовательности ДНК образуют гены, так же как буквы в предложении создают слова. Подобно тому, как мы используем слова, чтобы доносить свои мысли друг другу, клетка использует гены в качестве инструкций для создания белков.

ДНК и РНК являются частью одного из самых важных понятий в биологии, а именно центральной догмы, которая относится к процессу превращения ДНК в РНК, которая превращается в белок.

ДНК, расположенная глубоко внутри клетки в ее ядре, превращается в РНК во время процесса, который называется транскрипцией. Эта РНК, будучи копией ДНК, затем транслируется во все белки, которые делают нас теми, кто мы есть, и поддерживают наши жизненные процессы. Эта центральная догма уже указывает на два существенных различия между ДНК и РНК:

1. ДНК транскрибируется в РНК

ДНК жизненно важна для размножения клеток и для развития организмов. ДНК содержит все гены, которые превращают организм в то, чем он является. Таким образом, ДНК драгоценна и должна быть защищена. Он расположен в ядре, которое никогда не покидает.

Во время транскрипции копии ДНК создаются в форме РНК, которая в свою очередь продолжает кодировать белки.

Разница между этими двумя молекулами заключается в том, что процесс транскрипции идет только одним путем, а именно ДНК превращается в РНК, и никогда наоборот.

2. РНК транслируется в белки

Итак, учитывая вышесказанное, РНК является копией ДНК и готова к превращению в белки.

Этот процесс называется трансляцией, и он происходит в рибосомах или небольших процессорных единицах, которые читают строительные блоки РНК, называемые нуклеотидами.

Учитывая эти два различия, вы уже много знаете о двух молекулах. Одно из сходств между ними состоит в том, что оба являются длинноцепочечными молекулами или длинными цепочками букв, которые являются важными строительными блоками для всего, что следует после, а именно для нуклеотидов. Нуклеотидов всего четыре, что подводит нас к следующему различию между двумя молекулами.

3. Нуклеотидная последовательность

Молекула ДНК состоит из четырех нуклеотидов, а именно цитозина, гуанина, аденина и тимина. Каждый нуклеотид состоит из фосфатной группы, сахарной группы и азотистого основания. Молекула РНК также представляет собой цепочку из четырех нуклеотидов, а именно цитозина, гуанина, аденина и урацила.

4. Одна спираль, две спирали

ДНК является двухспиральной молекулой. РНК, с другой стороны, состоит только из одной цепи нуклеотидов. Две цепи ДНК удерживается вместе молекулярными связями между нуклеотидами, в результате чего цитозин связывается с гуанином, а аденин связывается с тимином (или урацилом в РНК).

5. Различные типы молекул РНК

Существует несколько различных моделей молекул РНК в зависимости от выполняемых функций. К ним относятся биологически активные РНК, такие как иРНК, тРНК и рРНК. Первая, а именно иРНК, несет информацию ДНК из ядра в рибосому.

В свою очередь, тРНК относится к трансферной РНК, которая важна для распознавания трехбуквенного кода, или кодона, который кодирует конкретную аминокислоту.

Рибосомная РНК, или рРНК, лежит в основе рибосомального механизма, который производит белки благодаря связыванию аминокислот.

Теперь, когда вы знаете немного больше о ДНК и РНК, будьте уверены, что между этими двумя молекулами есть еще больше различий. Они подчеркивают не только то, насколько продвинулись наши представления о молекулярной биологии, но и то, насколько точной и элегантной является природа матери в процессах, которые так важны в жизни.

Состав ДНК

Если говорить о составе ДНК более подробно, то нуклеотиды это базовый структурный элемент, кирпичики из которых состоят обе цепи спирали. Нуклеотиды подразделяются на 4 разновидности: аденин, тимин, гуанин и цитозин. И всего 4 этих нуклеотида осуществляют запись всей наследственной информации и составляют все известные гены.

Закручиваются в спираль обе цепочки генов тоже не просто так. Из всех четырёх различных нуклеотидов находиться напротив друг друга в разных цепочках они могут только двумя парами: аденин-тимин и гуанин-цитозин. В науке эти пары называются комплементарными.

Между парными нуклеотидами возникает крепкая водородная связь. При этом, связь аденином и тимином немного слабее чем между гуанином и цитозином. Но закручиваются цепочки в спираль по иным причинам:

  • Исследования показали, что скручивание помогает сократить длину цепочки генов в 5-6 раз. А во время суперспирализации (такое тоже бывает) длина цепочки может сократиться в целых 30 раз!
  • Помимо того, что пара цепочек генов закручена в спираль, существует и суперспирализация. За это явление отвечают гистоновые белки, которые имеют форму катушек для ниток. Уже закрученная двойная спираль наматывается на эти белки, как нитка. Что не оставляет сомнений в том, что спиральность, как таковая специально служит тому, что бы более компактно упаковать наследственную информацию в клетку.

Как и для чего делают ДНК тест?

Так как ДНК содержится в каждой клетке нашего тела, изучая генетический материал – кровь, кожу, волосы, слюну и т.п. – с помощью принципов микробиологии – ученые могут узнать владельца конкретной ДНК. Однако для получения точных результатов специалисты советуют сдать кровь из вены. Сегодня анализ ДНК позволяет определить наследственную предрасположенность к разным заболеваниям, которыми страдали или страдают родственники человека. Одним из таких заболеваний является шизофрения – в своей предыдущей статье я подробно рассказывала о том, почему эту болезнь так сложно лечить и изучать.

Более того, проанализировав ДНК специалисты могут рассказать о том, какие заболевания могут возникнуть у человека в будущем, определить индивидуальную непереносимость лекарств, склонность к наркомании и алкоголизму и многое другое.

ДНК есть у всех живых организмов.

Наиболее распространенным тестом ДНК является метод полимеразной цепной реакции или ПЦР. На сегодняшний день это один из новейших и наиболее точных способов диагностики. Несмотря на то, что этот метод до сих пор считается экспериментальным, он широко и успешно применяется в медицине. Так, большинство тестов на наличие/отсутствие в организме нового коронавируса SARS-CoV-2, которые проводятся во всем мире, являются именно ПЦР-тесты. Метод ПЦР в 1993 году разработал ученый Кэри Муллис, который получил за свое открытие Нобелевскую премию. Суть метода заключается в применении особых ферментов, которые много раз копируют фрагменты ДНК возбудителей болезни (как, например, с коронавирусом) которые можно обнаружить в пробах генетического материала, например в крови. Затем специалисты сверяют полученные фрагменты с базой данной, что позволяет выявить тип возбудителя болезни и его количество в организме.

Так выглядит амплификатор

Однако выявление и определение склонности к заболеваниям не является единственной областью, в которой прибегают к использованию тестов ДНК. Так, появление ДНК-тестов – как в свое время дактилоскопия (метод определения отпечатков пальцев) – изменило криминалистику. Благодаря анализу ДНК следователи имеют возможность собрать генетический материал преступника и поймать его. Но самое популярное использование ДНК-тестов – определение отцовства. Возможно дело в том, что этот анализ позволяет получить практически 100% результат. Недавно мой коллега Николай Хижняк в своей статье подробно рассказал о будущих возможностях исследования ДНК, рекомендую к прочтению.

Подводя черту отмечу, что сегодня загадка кода ДНК еще не раскрыта. Мы стоим в самом начале познания, что же это такое на самом деле? Приоткрыв небольшую щелочку двери мы можем только догадываться о том, какие перспективы в будущем для человека может открыть понимание что такое ДНК и как мы можем использовать эти знания!

ДНК (дезоксирибонуклеиновая кислота)

ДНК (дезоксирибонуклеиновая кислота) – своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение.

ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни человека.

Дезоксирибонуклеиновая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.

ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы.

Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи).

В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей.

Вторичная структура ДНК представляет собой двойную спираль, состоящую из двух параллельных неразветвленных полинуклеотидных цепей, закрученных в противоположные стороны вокруг общей оси.

Пуриновые и пиримидиновые основания расположены внутри спирали, а остатки фосфата и дезоксирибозы – снаружи.

Две спирали удерживаются вместе водородными связями между парами азотистых оснований. Водородные связи образуются между определенными основаниями: тимин (Т) образует водородные связи только с аденином (А), а цитозин (Ц) – только с гуанином (Г). В первой паре азотистых оснований две водородные связи, а во второй – три.

Такие пары оснований называются комплементарными парами. А такое пространственное соответствие молекул, способствующее их сближению и образованию водородных связей, называется комплементарностью. Комплементарность обусловливает спиралевидную модель ДНК.

Две спирали в молекуле ДНК комплементарны друг другу. Последовательность нуклеотидов в одной из спиралей определяет последовательность нуклеотидов в другой.

В каждой паре оснований, связанных водородными связями, одно из оснований – пуриновое, а другое пиримидиновое. Общее число остатков пуриновых оснований в молекуле ДНК равно числу остатков пиримидиновых оснований.

Таким образом,

  • ТИМИН (Т) комплементарен АДЕНИНУ (А),
  • ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).

Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранения и передачи наследственных признаков.

Репликация ДНК

Двухспиральная структура ДНК с комплементарными полинуклеотидными цепями обеспечивает возможность самоудвоения (репликации) этой молекулы.

Перед удвоением водородные связи разрываются, и две цепи раскручиваются и расходятся. Каждая цепь затем служит матрицей для образования на ней комплементарной цепи.

После разделения цепей происходит саморепликация, т.е. образование новой двойной спирали, идентичной исходной.

После репликации образуются две дочерние молекулы ДНК, в каждой из которых одна спираль взята из родительской ДНК, а другая (комплементарная) синтезирована заново.

Таким образом, сохраняется и передается новому поколению исходная структура ДНК.

Длина полинуклеотидных цепей ДНК практически неограничена. Число пар оснований в двойной спирали может меняться от нескольких тысяч у простейших вирусов до сотен миллионов у человека.

Видеофильм «ДНК. Код Жизни»

Рубрики: Нуклеиновые кислоты

Нуклеиновые кислоты

Впервые были описаны в 1869 году швейцарским биохимиком Ф. Мишером (1844-1895 гг.). Выявлены в ядре клеток, откуда происходит название (от лат. nucleus–ядро). Нуклеиновых кислот особенно много в клетках меристемы, регенерирующих тканях, железах секреции, клетках злокачественных опухолей. Это сложные высокомолекулярные вещества, мономерами которых являются нуклеотиды.

Нуклеотид состоит из азотистого основания, углевода (пентозы) и остатка фосфорной кислоты.

В зависимости от пентозы различают два типа нуклеиновых кислот: рибонуклеиновую (РНК, входит рибоза) и дезоксирибонуклеиновую (ДНК, входит дезоксирибоза). Азотистые основания– это производные пиримидина–цитозин, урацил, тимин или производные пурина–аденин и гуанин. В нуклеотидах РНК содержатся азотистые основания: аденин (А), гуанин (Г), цитозин (Ц), урацил (У). В нуклеотидах ДНК содержатся азотистые основания: аденин (А), гуанин (Г), цитозин (Ц), тимин (Т). Таким образом, в состав как ДНК, так и РНК, входят по четыре типа нуклеотидов. Три типа азотистых оснований в них общие, а по четвертому ДНК (тимину) и РНК (урацилу) – различаются.

Основу нуклеиновых кислот составляют цепи из пентоз, которые чередуются с фосфатами (каждый остаток фосфорной кислоты связан фосфодиэфирной связью с пятым атомом углерода одного остатка пентозы и третьим атомом углерода второго остатка пентозы). Концы цепей нуклеотидов, соединенных в нуклеиновую кислоту, разные. На одном конце расположен фосфат, связанный пятым атомом пентозы. Этот конец называется 5′-концом (5-штрих концом). На другом конце остается не связанная с фосфатом ОН-группа возле третьего атома пентозы – 3′-конец.

Нуклеиновые кислоты имеют пространственную первичную структуру (линейную), а также более сложное (вторичное, третичное) пространственное строение, которое формируется за счет водородных связей. Это – определенная последовательность расположения нуклеотидов.

Молекулы ДНК в организме стабильные (постоянное количество), молекулы РНК – лабильные (количество изменяется).

Нуклеотидная последовательность

Он определяется с помощью традиционного метода секвенирования отобранного для анализа биологического материала.

По рекомендации всемирной организации IUPAC последовательность нуклеотидов записывается путем использования следующих букв латинского алфавита с дальнейшей расшифровкой:

Т – тимин;

А – аденин;

G – гуанин;

С – цитозин;

R – GA аденин в комплексе с гуанином и основаниями пурина;

Y – TC пиримидиновые соединения;

K – GT нуклеотиды, содержащие кетогруппу;

M – AC входящие в аминогруппу;

S – GC мощные, отличающиеся тремя водородными соединениями;

W – AT неустойчивые, которые образуют только по две водородные связи.

Последовательность нуклеотидов может меняться, а обозначения латинскими буквами необходимы в тех случаях, когда порядок расположения эфирных соединений неизвестен, является несущественным либо уже имеются результаты первичных исследований.

Наибольшее количество вариантов и комбинаций нуклеозидфосфатов свойственно для ДНК. Для записи эфирных соединений РНК достаточно символов A, С, G, U. Последнее литерное обозначение является веществом уридин, которое встречается только в РНК. Последовательность символических обозначений всегда записывается без использования пробелов.

Сколько нуклеотидов в ДНК

Для того, чтобы максимально подробно понимать, о чем идет речь, следует иметь четкое представление о самой ДНК. Это отдельный вид молекул, которые имеют вытянутую форму и состоят из структурных элементов, а именно – нуклеозидфосфатов. Какое количество нуклеотидов в ДНК? Существует 4 вида эфирных соединений данного типа, входящие в состав ДНК. Это аденин, тимин, цитозин и гуанин. Все они формируют единую цепочку, из которой и образовывается молекулярная структура ДНК.

Впервые строение ДНК было расшифровано в далеком 1953 году американскими учеными Френсисом Криком и Джеймсом Уотсоном. В одной молекуле дезоксирибонуклеиновой кислоты содержится по две цепочки нуклеозидфосфатов. Они размещены таким образом, что внешне напоминают спираль, закручивающуюся вокруг своей оси.

Строение нуклеотида

При этом строение молекулы имеет одну важную особенность. Все нуклеотидные цепочки обладают свойством комплементарности. Это означает, что друг напротив друга размещаются только эфирные соединения определенного вида. Известно, что напротив тимина всегда расположен аденин. Напротив цитозина не может находится никакое другое вещество кроме гуанина. Такие нуклеотидные пары формируют принцип комплементарности и являются неразделимыми.

Масса и длина

Известно, что протяжная длина одного внутриклеточного остатка, состоящего из аминокислот в единой полипептидной цепи – 3,5 ангстрем. Средняя масса одного молекулярного остатка равна 110 а.е.м.

Кроме этого, еще выделяют мономеры нуклеотидного типа, которые сформированы не только из аминокислот, но имеют и эфирные составляющие. Это мономеры ДНК и РНК. Их линейная длина измеряется непосредственно внутри нуклеиновой кислоты и составляет не менее 3,4 ангстрем. Молекулярный вес одного нуклеозидфосфата находится в пределах 345 а.е.м. Это исходные данные, которые используются в практической лабораторной работе, посвященной опытам, генетическим исследованиям и прочей научной деятельности.

Гены ДНК

Молекула несет в себе всю важную информацию о нуклеотидах, определяет расположение аминокислот в белках. ДНК человека и всех других организмов хранит сведения о его свойствах, передавая их потомкам.

Частью ее является ген — группа нуклеотидов, которая кодирует информацию о белке. Совокупность генов клетки образует ее генотип или геном.

Гены расположены на определенном участке ДНК. Они состоят из определенного числа нуклеотидов, которые расположены в последовательной комбинации. Имеется в виду то, что ген не может поменять свое место в молекуле, и он имеет совершенно конкретное число нуклеотидов. Их последовательность уникальна. Например, для получения адреналина используется один порядок, а для инсулина — другой.

Кроме генов, в ДНК располагаются некодирующие последовательности. Они регулируют работу генов, помогают хромосомам и отмечают начало и конец гена. Но сегодня остается неизвестной роль большинства из них.

Номенклатура

Буквенные коды для обозначения нуклеотидов
Код Означает Комплементарная пара
A A T в ДНК; U в РНК
C C G
G G C
Tили U T в ДНК; U в РНК A
M Aили C K
R Aили G Y
W Aили T W
S Cили G S
Y Cили T R
K Gили T M
V Aили Cили G B
H Aили Cили T D
D Aили Gили T H
B Cили Gили T V
Xили N Aили Cили Gили T (U) любой

Соединения, состоящие из двух нуклеотидовых молекул, называются динуклеотидами, из трёх — тринуклеотидами, из небольшого числа — олигонуклеотидами, а из многих — полинуклеотидами, или нуклеиновыми кислотами.

Названия нуклеотидов представляют собой аббревиатуры в виде стандартных трёх- или четырёхбуквенных кодов.

Если аббревиатура начинается со строчной буквы «д» (англ. d), значит подразумевается дезоксирибонуклеотид; отсутствие буквы «д» означает рибонуклеотид. Если аббревиатура начинается со строчной буквы «ц» (англ. c), значит речь идёт о циклической форме нуклеотида (например, цАМФ).

Первая прописная буква аббревиатуры указывает на конкретное азотистое основание или группу возможных нуклеиновых оснований, вторая буква — на количество остатков фосфорной кислоты в структуре (М — моно-, Д — ди-, Т — три-), а третья прописная буква — всегда буква Ф («-фосфат»; англ. P).

Латинские и русские коды для нуклеиновых оснований:

  • A — А: Аденин;
  • G — Г: Гуанин;
  • C — Ц: Цитозин;
  • T — Т: Тимин (5-метилурацил), встречается в РНК , занимает место урацила в ДНК;
  • U — У: Урацил, встречается у бактериофагов в ДНК, занимает место тимина в РНК.

Общепринятые буквенные коды для обозначения нуклеотидных оснований соответствуют номенклатуре, принятой Международным союзом теоретической и прикладной химии (International Union of Pure and Applied Chemistry, сокращённо — англ. IUPAC, ИЮПАК) и Международным союзом биохимии и молекулярной биологии (, сокращённо — англ. IUBMB). Если при секвенировании последовательности ДНК или РНК возникает сомнение в точности определения того или иного нуклеотида, помимо пяти основных (A, C, T, G, U), используют другие буквы латинского алфавита в зависимости от того, какие наиболее вероятные нуклеотиды могут находиться в данной позиции последовательности. Эти же дополнительные буквы используют для обозначения вырожденных (не совпадающих у разных гомологичных последовательностей) позиций, например при записи последовательности праймеров для ПЦР.

Длину секвенированных участков ДНК (гена, , хромосомы) или всего генома указывают в парах нуклеотидов (пн), или парах оснований (англ. base pairs, сокращённо bp), подразумевая под этим элементарную единицу двухцепочечной молекулы нуклеиновой кислоты, сложенную из двух спаренных комплементарных оснований.

Структура ДНК

синтезе двойной спирали ДНК

Зная последовательность нуклеотидов одной цепи ДНК можно по принципу дополнения или комплементарности достроить вторую.

Третичная структура ДНК образовывается путем трехмерных сложных соединений. Это делает молекулу более компактной, чтобы она могла свободно разместиться в небольшом объеме клетки. длина кишечной палочки ДНК более 1 мм, в то время как длина самой клетки менее 5 мкм.

Количество пиримидиновых оснований равняется всегда числу пуриновых. Расстояние между нуклеотидами равняется 0,34 нм. Это постоянная величина, как и молекулярная масса.

Нуклеотид — это… Что такое Нуклеотид?

Нуклеоти́ды — фосфорные эфиры нуклеозидов, нуклеозидфосфаты. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.

Строение

Нуклеотиды являются сложными эфирами нуклеозидов и фосфорных кислот. Нуклеозиды, в свою очередь, являются N-гликозидами, содержащими гетероциклический фрагмент, связанный через атом азота с C-1 атомом остатка сахара.

В природе наиболее распространены нуклеотиды, являющиеся β-N-гликозидами пуринов или пиримидинов и пентоз — D-рибозы или D-2-рибозы. В зависимости от структуры пентозы различают рибонуклеотиды и дезоксирибонуклеотиды, которые являются мономерами молекул сложных биологических полимеров (полинуклеотидов) — соответственно РНК или ДНК.

Фосфатный остаток в нуклеотидах обычно образует сложноэфирную связь с 2′-, 3′- или 5′-гидроксильными группами рибонуклеозидов, в случае 2′-дезоксинуклеозидов этерифицируются 3′- или 5′-гидроксильные группы.

Большинство нуклеотидов являются моноэфирами ортофосфорной кислоты, однако известны и диэфиры нуклеотидов, в которых этерифицированы два гидроксильных остатка — например, циклические нуклеотиды циклоаденин- и циклогуанин монофосфаты (цАМФ и цГМФ).

Наряду с нуклеотидами — эфирами ортофосфорной кислоты (монофосфатами) в природе также распространены и моно- и диэфиры пирофосфорной кислоты (дифосфаты, например, аденозиндифосфат) и моноэфиры триполифосфорной кислоты (трифосфаты, например, аденозиндифосфат).

Номенклатура

Буквенные коды для обозначения нуклеотидов Код Означает Комплементарная пара

A A T в ДНК;
U в РНК
C C G
G G C
T
или U
T в ДНК;
U в РНК
A
M A
или C
K
R A
или G
Y
W A
или T
W
S C
или G
S
Y C
или T
R
K G
или T
M
V A
или C
или G
B
H A
или C
или T
D
D A
или G
или T
H
B C
или G
или T
V
X
или N
A
или C
или G
или T (U)
любой

Соединения, состоящие из двух нуклеотидовых молекул, называются динуклеотидами, из трёх — тринуклеотидами, из небольшого числа — олигонуклеотидами, а из многих — полинуклеотидами, или нуклеиновыми кислотами.

Названия нуклеотидов представляют собой аббревиатуры в виде стандартных трёх- или четырёхбуквенных кодов.

Если аббревиатура начинается со строчной буквы «д» (англ. d), значит подразумевается дезоксирибонуклеотид; отсутствие буквы «д» означает рибонуклеотид. Если аббревиатура начинается со строчной буквы «ц» (англ. c), значит речь идёт о циклической форме нуклеотида (например, цАМФ).

Первая прописная буква аббревиатуры указывает на конкретное азотистое основание или группу возможных нуклеиновых оснований, вторая буква — на количество остатков фосфорной кислоты в структуре (М — моно-, Д — ди-, Т — три-), а третья прописная буква — всегда буква Ф («-фосфат»; англ. P).

Общепринятые буквенные коды для обозначения нуклеотидных оснований соответствуют номенклатуре, принятой Международным союзом теоретической и прикладной химии (International Union of Pure and Applied Chemistry, сокращённо — англ. IUPAC, русск.

ИЮПАК) и Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology, сокращённо — англ. IUBMB).

Если при секвенировании последовательности ДНК или РНК возникает сомнение в точности определения того или иного нуклеотида, помимо пяти основных (A, C, T, G, U), используют другие буквы латинского алфавита в зависимости от того, какие наиболее вероятные нуклеотиды могут находиться в данной позиции последовательности.

Длину секвенированных участков ДНК (гена, сайта, хромосомы) или всего генома указывают в парах нуклеотидов (пн), или парах оснований (англ. base pairs, сокращённо bp), подразумевая под этим элементарную единицу двухцепочечной молекулы нуклеиновой кислоты, сложенную из двух спаренных комплементарных оснований.

История

В домолекулярной генетике для обозначения наименьшего элемента в структуре ДНК, который может быть подвержен спонтанной или индуцированной мутации, применялся особый термин рекон.

В настоящее время показано, что таким наименьшим элементом является один нуклеотид (или одно азотистое основание в составе нуклеотида), поэтому данный термин более не употребляется. Для определения понятия единица мутации применялся термин мутон.

В настоящее время показано, что фенотипически мутация может проявляется даже при замене одного нуклеотида (или азотистого основания в составе нуклеотида), таким образом, термин мутон соответствует одному нуклеотиду.

Функции и свойства ДНК

  • сохраняет наследственную информацию;
  • передача (удвоение/репликация);
  • транскрипция, реализация;
  • ауторепродукция ДНК. Функционирование репликона.

Процесс самовоспроизведения молекулы нуклеиновой кислоты сопровождается передачей от клетки к клетке копий генетической информаций. Для его осуществления необходимы набор специфических ферментов. В этом процессе полуконсервативного типа образуется репликативная вилка.

Репликон представляет собой единицу репликационного процесса участка генома, подконтрольного одной точке инициации репликации. Как правило, геном прокариот -это репликон. Репликация от точки инициации идет в обе стороны, иногда с различной скоростью.

Состав и основные свойства нуклеотидов

В состав молекулы нуклеотида (мононуклеотида) в определенной последовательности входят три химических соединения:

  1. Пентоза или пятиугольный сахар:
  • дезоксирибоза. Эти нуклеотиды называют дезоксирибонуклеотидами. Они входят в состав ДНК;
  • рибоза. Нуклеотиды входят в состав РНК и называются рибонуклеотидами.

2. Азотистая пиримидиновая или пуриновая основа, связанная с углеродным атомом сахара. Это соединение называют нуклеозидом

3. Фосфатная группа, состоящая из остатков фосфорной кислоты ( в количестве от одного до трех). Присоединяется к углероду сахара эфирными связями, образующими молекулу нуклеотида .

Свойствами нуклеотидов являются:

  • участие в метаболизме и других физиологических процессах, которые протекают в клетке;
  • осуществление контроля над репродукцией и ростом;
  • хранение информации о наследуемых признаках и о структуре белка.

Строение

Нуклеотиды являются сложными эфирами нуклеозидов и фосфорных кислот. Нуклеозиды, в свою очередь, являются N-гликозидами, содержащими гетероциклический фрагмент, связанный через атом азота с C-1 атомом остатка сахара.

В природе наиболее распространены нуклеотиды, являющиеся β-N-гликозидами пуринов или пиримидинов и пентоз — D-рибозы или D-2-дезоксирибозы. В зависимости от структуры пентозы различают рибонуклеотиды и дезоксирибонуклеотиды, которые являются мономерами молекул сложных биологических полимеров (полинуклеотидов) — соответственно РНК или ДНК.

Фосфатный остаток в нуклеотидах обычно образует сложноэфирную связь с 2′-, 3′- или 5′-гидроксильными группами рибонуклеозидов, в случае 2′-дезоксинуклеозидов этерифицируются 3′- или 5′-гидроксильные группы.

Большинство нуклеотидов являются моноэфирами ортофосфорной кислоты, однако известны и диэфиры нуклеотидов, в которых этерифицированы два гидроксильных остатка — например, циклические нуклеотиды циклоаденин- и циклогуанин монофосфаты (цАМФ и цГМФ). Наряду с нуклеотидами — эфирами ортофосфорной кислоты (монофосфатами) в природе также распространены и моно- и диэфиры пирофосфорной кислоты (дифосфаты, например, аденозиндифосфат) и моноэфиры триполифосфорной кислоты (трифосфаты, например, аденозинтрифосфат).

Компоненты нуклеотида

В состав нуклеотида входят такие компоненты, как азотистая основа, сахар и один или несколько фосфатов. Стоит рассмотреть каждый их них более подробно:

  • Азотистое основание. Это может быть аденин, тимин, цитозин, гуанин, урацил. Они не являются кислотами, каждый из них содержит несколько атомов азота. Нуклеотиды могут соединяться друг с другом: цитозин всегда составляет пару с гуанином и адениновые пары с тимином в ДНК или урацил в РНК.
  • Следующим основным компонентом нуклеотида является сахар. Существует много видов сахара, но здесь важны два: рибоза — это сахар, который вы увидите в РНК. Существует версия рибозы, у которой отсутствует атом кислорода, и он будет называться сахарной дезоксирибозой. Это тип сахара в ДНК-нуклеотидах. Помните, что ДНК — это дезоксирибонуклеиновая кислота.
  • Последним основным фрагментом нуклеотида является фосфат. Фосфат представляет собой атом фосфора, связанный с четырьмя атомами кислорода. Связи между фосфатами являются очень высокой энергией и действуют как форма хранения энергии. Когда связь сломана, полученная энергия может быть использована для выполнения работы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector