Сходство днк и рнк. сравнительная характеристика днк и рнк: таблица
Содержание:
Методы выделения
Разработаны различные способы получения соединений из естественных источников. Главными условиями этих методик являются результативное разделение нуклеиновых кислот и белков, наименьшая фрагментация веществ, полученных в ходе процесса. На сегодняшний день широко используется классический способ. Суть этого метода заключается в разрушении стенок биологического материала и дальнейшей их обработке анионным детергентом. В результате получается осадок из белка, а нуклеиновые кислоты остаются в растворе. Используется и другой метод. В этом случае нуклеиновые кислоты могут оседать в гелевом состоянии с помощью использования этанола и солевого раствора
При этом следует соблюдать определенную осторожность. В частности, добавлять этанол нужно с большой аккуратностью в солевой раствор для получения гелевого осадка
В какой концентрации выделилась нуклеиновая кислота, какие примеси в ней присутствуют, можно определить спектрофотометрическим методом. Нуклеиновые кислоты с легкостью подвергаются деградации с помощью нуклеазы, представляющей особый класс ферментов. При таком выделении необходимо, чтобы лабораторное оборудование прошло обязательную обработку ингибиторами. К ним относится, например, ингибитор DEPC, который применяется при выделении РНК.
ДНК (дезоксирибонуклеиновая кислота)
ДНК (дезоксирибонуклеиновая кислота) – своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение.
ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни человека.
Дезоксирибонуклеиновая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.
В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.
ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы.
Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи).
В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей.
Вторичная структура ДНК представляет собой двойную спираль, состоящую из двух параллельных неразветвленных полинуклеотидных цепей, закрученных в противоположные стороны вокруг общей оси.
Пуриновые и пиримидиновые основания расположены внутри спирали, а остатки фосфата и дезоксирибозы – снаружи.
Две спирали удерживаются вместе водородными связями между парами азотистых оснований. Водородные связи образуются между определенными основаниями: тимин (Т) образует водородные связи только с аденином (А), а цитозин (Ц) – только с гуанином (Г). В первой паре азотистых оснований две водородные связи, а во второй – три.
Такие пары оснований называются комплементарными парами. А такое пространственное соответствие молекул, способствующее их сближению и образованию водородных связей, называется комплементарностью. Комплементарность обусловливает спиралевидную модель ДНК.
Две спирали в молекуле ДНК комплементарны друг другу. Последовательность нуклеотидов в одной из спиралей определяет последовательность нуклеотидов в другой.
В каждой паре оснований, связанных водородными связями, одно из оснований – пуриновое, а другое пиримидиновое. Общее число остатков пуриновых оснований в молекуле ДНК равно числу остатков пиримидиновых оснований.
Таким образом,
- ТИМИН (Т) комплементарен АДЕНИНУ (А),
- ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).
Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранения и передачи наследственных признаков.
Репликация ДНК
Двухспиральная структура ДНК с комплементарными полинуклеотидными цепями обеспечивает возможность самоудвоения (репликации) этой молекулы.
Перед удвоением водородные связи разрываются, и две цепи раскручиваются и расходятся. Каждая цепь затем служит матрицей для образования на ней комплементарной цепи.
После разделения цепей происходит саморепликация, т.е. образование новой двойной спирали, идентичной исходной.
После репликации образуются две дочерние молекулы ДНК, в каждой из которых одна спираль взята из родительской ДНК, а другая (комплементарная) синтезирована заново.
Таким образом, сохраняется и передается новому поколению исходная структура ДНК.
Длина полинуклеотидных цепей ДНК практически неограничена. Число пар оснований в двойной спирали может меняться от нескольких тысяч у простейших вирусов до сотен миллионов у человека.
Видеофильм «ДНК. Код Жизни»
Рубрики: Нуклеиновые кислоты
Строение и функции АТФ
Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2–0,5%) содержится в скелетных мышцах.
АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.
Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).
Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).
АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.
-
Перейти к лекции №3 «Строение и функции белков. Ферменты»
-
Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»
-
Смотреть оглавление (лекции №1-25)
Мономеры нуклеиновых кислот
Строение и функции ДНК, РНК, белков и других органических полимеров зависят как от качественного, так и от количественного состава их макромолекул. Оба вида нуклеиновых кислот состоят из структурных элементов, именуемых нуклеотидами. Как известно из курса химии, строение вещества обязательно влияет на его функции. ДНК и РНК не являются исключением. Оказывается, что от нуклеотидного состава зависит вид самой кислоты и ее роль в клетке. Каждый мономер содержит три части: азотистое основание, углевод и остаток ортофосфорной кислоты. Известно четыре вида азотистых оснований для ДНК: аденин, гуанин, тимин и цитозин. В молекулах РНК ими будут, соответственно, аденин, гуанин, цитозин и урацил. Углевод представлен различными видами пентозы. В рибонуклеиновой кислоте находится рибоза, а в ДНК – ее обескислороженная форма, называемая дезоксирибозой.
Строение и функции ДНК
ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).
Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.
Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.
Моносахарид нуклеотида ДНК представлен дезоксирибозой.
Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.
Азотистое основание | Название нуклеотида | Обозначение |
---|---|---|
Аденин | Адениловый | А (A) |
Гуанин | Гуаниловый | Г (G) |
Тимин | Тимидиловый | Т (T) |
Цитозин | Цитидиловый | Ц (C) |
Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3′-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5′-углеродом (его называют 5′-концом), другой — 3′-углеродом (3′-концом).
Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности. Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа»), но объяснить этот факт он не смог.
Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.
Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3′-конца одной цепи находится 5′-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.
Функция ДНК — хранение и передача наследственной информации.
Немного о РНК
Проект «Геном человека» показал, что молекулы РНК также важны для жизни, как и ДНК. Внутри клеток существует множество РНК (рис. 2). Изначально РНК подразделяются на некодирующие РНК (нкРНК), которые не транслируются в белки, и кодирующие РНК (мРНК), служащие матрицей для синтеза полипептидных цепей белка. Некодирующие РНК имеют более сложную классификацию. Они бывают инфраструктурными и регуляторными. Инфраструктурные РНК представлены рибосомными РНК (рРНК) и транспортными РНК (тРНК). Молекулы рРНК синтезируются в ядрышке и составляют основу рибосомы, а также кодируют белки субъединиц рибосомы. После того, как рРНК полностью собраны, они переходят в цитоплазму, где в качестве ключевых регуляторов трансляции, участвуют в чтении кода мРНК. Последовательность из трех азотистых оснований в мРНК указывает на включение определенной аминокислоты в последовательность белка. Молекулы тРНК, приносят указанные аминокислоты на рибосомы, где синтезируется белок.
Дополнительно о РНК читайте в статьях «Биомолекулы»: «Обо всех РНК на свете, больших и малых», «Кодирующие некодирующие РНК» и «Власть колец: всемогущие кольцевые РНК» .
Рисунок 2. Виды РНК
рисунок автора статьи
Регуляторные нкРНК очень широко представлены в организме, классифицируются в зависимости от размера и выполняют ряд важных функций (табл. 1).
Название | Обозначение | Длина | Функции | |
---|---|---|---|---|
Длинные некодирующие РНК | днкРНК, lncRNA | 200 нуклеотидов | 1. Регулируют избирательное метилирование ДНК, направляя ДНК-метилтрансферазу 2. Руководят избирательной посадкой репрессорных комплексов polycomb |
|
Малые РНК | Малые ядерные РНК | мяРНК, snRNA | 150 нуклеотидов | 1. Участвуют в сплайсинге 2. Регулируют активность факторов транскрипции 3. Поддерживают целостность теломер |
Малые ядрышковые РНК | мякРНК, snoRNA | 60–300 нуклеотидов | 1. Участвуют в химической модификации рРНК, тРНК и мяРНК 2. Возможно, участвуют в стабилизации структуры рРНК и защите от действия гидролаз |
|
Малые интерферирующие РНК | миРНК, siRNA | 21–22 нуклеотидов | 1. Осуществляют антивирусную иммунную защиту 2. Подавляют активность собственных генов |
|
Микро-РНК | мкРНК, miRNA | 18–25 нуклеотидов | Подавляют трансляцию путем РНК-интерференции | |
Антисмысловые РНК | asRNA | 1. Короткие: менее 200 нуклеотидов 2. Длинные: более 200 нуклеотидов |
Блокируют трансляцию, образуя гибриды с мРНК | |
РНК, связанные с белками Piwi | piRNA, piwiRNA | 26–32 нуклеотидов | Их также называют «стражами генома», они подавляют активность мобильных генетических элементов во время эмбриогенеза |
Нуклеотид — это… Что такое Нуклеотид?
Нуклеоти́ды — фосфорные эфиры нуклеозидов, нуклеозидфосфаты. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.
Строение
Нуклеотиды являются сложными эфирами нуклеозидов и фосфорных кислот. Нуклеозиды, в свою очередь, являются N-гликозидами, содержащими гетероциклический фрагмент, связанный через атом азота с C-1 атомом остатка сахара.
В природе наиболее распространены нуклеотиды, являющиеся β-N-гликозидами пуринов или пиримидинов и пентоз — D-рибозы или D-2-рибозы. В зависимости от структуры пентозы различают рибонуклеотиды и дезоксирибонуклеотиды, которые являются мономерами молекул сложных биологических полимеров (полинуклеотидов) — соответственно РНК или ДНК.
Фосфатный остаток в нуклеотидах обычно образует сложноэфирную связь с 2′-, 3′- или 5′-гидроксильными группами рибонуклеозидов, в случае 2′-дезоксинуклеозидов этерифицируются 3′- или 5′-гидроксильные группы.
Большинство нуклеотидов являются моноэфирами ортофосфорной кислоты, однако известны и диэфиры нуклеотидов, в которых этерифицированы два гидроксильных остатка — например, циклические нуклеотиды циклоаденин- и циклогуанин монофосфаты (цАМФ и цГМФ).
Наряду с нуклеотидами — эфирами ортофосфорной кислоты (монофосфатами) в природе также распространены и моно- и диэфиры пирофосфорной кислоты (дифосфаты, например, аденозиндифосфат) и моноэфиры триполифосфорной кислоты (трифосфаты, например, аденозиндифосфат).
Номенклатура
Буквенные коды для обозначения нуклеотидов Код Означает Комплементарная пара
A | A | T в ДНК; U в РНК |
C | C | G |
G | G | C |
T или U |
T в ДНК; U в РНК |
A |
M | A или C |
K |
R | A или G |
Y |
W | A или T |
W |
S | C или G |
S |
Y | C или T |
R |
K | G или T |
M |
V | A или C или G |
B |
H | A или C или T |
D |
D | A или G или T |
H |
B | C или G или T |
V |
X или N |
A или C или G или T (U) |
любой |
Соединения, состоящие из двух нуклеотидовых молекул, называются динуклеотидами, из трёх — тринуклеотидами, из небольшого числа — олигонуклеотидами, а из многих — полинуклеотидами, или нуклеиновыми кислотами.
Названия нуклеотидов представляют собой аббревиатуры в виде стандартных трёх- или четырёхбуквенных кодов.
Если аббревиатура начинается со строчной буквы «д» (англ. d), значит подразумевается дезоксирибонуклеотид; отсутствие буквы «д» означает рибонуклеотид. Если аббревиатура начинается со строчной буквы «ц» (англ. c), значит речь идёт о циклической форме нуклеотида (например, цАМФ).
Первая прописная буква аббревиатуры указывает на конкретное азотистое основание или группу возможных нуклеиновых оснований, вторая буква — на количество остатков фосфорной кислоты в структуре (М — моно-, Д — ди-, Т — три-), а третья прописная буква — всегда буква Ф («-фосфат»; англ. P).
Общепринятые буквенные коды для обозначения нуклеотидных оснований соответствуют номенклатуре, принятой Международным союзом теоретической и прикладной химии (International Union of Pure and Applied Chemistry, сокращённо — англ. IUPAC, русск.
ИЮПАК) и Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology, сокращённо — англ. IUBMB).
Если при секвенировании последовательности ДНК или РНК возникает сомнение в точности определения того или иного нуклеотида, помимо пяти основных (A, C, T, G, U), используют другие буквы латинского алфавита в зависимости от того, какие наиболее вероятные нуклеотиды могут находиться в данной позиции последовательности.
Длину секвенированных участков ДНК (гена, сайта, хромосомы) или всего генома указывают в парах нуклеотидов (пн), или парах оснований (англ. base pairs, сокращённо bp), подразумевая под этим элементарную единицу двухцепочечной молекулы нуклеиновой кислоты, сложенную из двух спаренных комплементарных оснований.
История
В домолекулярной генетике для обозначения наименьшего элемента в структуре ДНК, который может быть подвержен спонтанной или индуцированной мутации, применялся особый термин рекон.
В настоящее время показано, что таким наименьшим элементом является один нуклеотид (или одно азотистое основание в составе нуклеотида), поэтому данный термин более не употребляется. Для определения понятия единица мутации применялся термин мутон.
В настоящее время показано, что фенотипически мутация может проявляется даже при замене одного нуклеотида (или азотистого основания в составе нуклеотида), таким образом, термин мутон соответствует одному нуклеотиду.
ДНК – хранитель генетической информации
Организмы используют расстановку нуклеотидов ДНК для кодирования информации, указывающей аминокислотную последовательность первичной структуры их белков. Этот способ похож на то, как мы кодируем слова в предложении при помощи букв.
Предложение, написанное на русском языке, состоит из комбинации 33 букв алфавита в определённом порядке; код молекулы ДНК состоит из комбинации четырёх типов нуклеотидов в специфической последовательности: А, T, Г, Ц.
ДНК в организмах содержится в виде двух цепей, обёрнутых в виде спирали вокруг друг друга и вместе вокруг общей оси, либо в линейной форме, либо кольцевой у большинства прокариот, а также в хлоропластах и митохондриях эукариот. Исключение – одноцепочечная молекула ДНК некоторых фагов — вирусов, поражающих бактериальные клетки. Две нити ДНК соединены связями-перемычками, как винтовая лестница ступенями. Такая структура молекулы называется двойной спиралью. Каждый шаг винтовой лестницы ДНК состоит из пары оснований. Основание одной цепи притягивается водородной связью к основанию другой цепи.
Строение ДНК
Правила спаривания возникают из наиболее стабильной конфигурации водородного скрепления между двумя основаниями: пары аденина с тимином двумя водородными связями (в ДНК) или с урацилом (в РНК) и пары цитозина с гуанином — тремя водородными связями.
Основания, которые участвуют в сопряжении, дополняют друг друга, это свойство носит название комплементарности. Если известна последовательность оснований одной цепи ДНК, то благодаря специфичности их соединения, становится известна структура её партнёра — второй цепи.
Схема строения ДНК
В клетках эукариот ДНК дополнительно комплектуется с белками для формирования структур, называемых хромосомами. Это структуры более высокого порядка, которые влияют на функцию ДНК, поскольку участвуют в контроле за экспрессией генов.
Определение размеров молекул ДНК стало возможным только после изобретения методов электронной микроскопии, ультрацентрифугирования, электрофореза.
Расшифровка структуры ДНК имеет свою предысторию. В 1950 г. американский ученый Э. Чаргафф и его коллеги, исследуя состав молекулы ДНК, установили следующие закономерности, впоследствии названные правилами Чаргаффа.
- Количество адениловых нуклеотидов в молекуле ДНК равно количеству тимидиловых (А = Т), а количество гуаниловых — количеству цитидиловых (Г = Ц).
- Количество пуриновых азотистых оснований равно количеству пиримидиновых (А + Г = Т + Ц).
- Суммарное количество адениловых и цитидиловых нуклеотидов равно суммарному количеству тимидиловых и гуаниловых нуклеотидов (А + Ц = Т + Г), что следует из первого правила.
Это открытие способствовало установлению пространственной структуры ДНК и определению ее роли в передаче наследственной информации от одного поколения другому. В 1953 г. на основании правил Чаргаффа и данных о пространственной структуре молекулы ДНК, полученных английским биофизиком М. Уилкинсом, американский ученый Дж. Уотсон и англичанин Ф. Крик предложили трехмерную модель структуры ДНК, которая получила название «двойной спирали». За разработку модели молекулы ДНК Дж. Уотсон, Ф. Крик и М. Уилкинс в 1962 г. были удостоены Нобелевской премии.
Параметры двойной спирали ДНК
ДНК и РНК
Начнем с того, какая отрасль науки занимается такими сложными вопросами, как:
- изучение принципов хранения наследственной информации;
- ее реализация;
- передача;
- изучение структуры биополимеров;
- их функции.
Все это изучается молекулярной биологией. Именно в этой отрасли биологических наук можно найти ответ на вопрос о том, какова биологическая роль ДНК и РНК.
Эти высокомолекулярные соединения, образованные из нуклеотидов, имеют название «нуклеиновые кислоты». Именно здесь хранится информация об организме, которая определяет развитие особи, рост и наследственность.
Открытие дезоксирибонуклеиновой и рибонуклеиновой кислоты приходится на 1868 год. Тогда ученым удалось обнаружить их в ядрах лейкоцитов и сперматозоидах лося. Последующее изучение показало, что ДНК можно обнаружить во всех клетках растительной и животной природы. Модель ДНК была представлена в 1953 году, а Нобелевская премия за открытие вручена в 1962 году.
Кратко о строении РНК
Итак, РНК, рибонуклеиновая кислота, – это биополимер, молекула которого представляет собой цепочку, образованную четырьмя видами нуклеотидов. Каждый нуклеотид, в свою очередь, состоит из азотистого основания (аденина А, гуанина Г, урацила У либо цитозина Ц) в соединении с сахаром рибозой и остатком фосфорной кислоты. Фосфатные остатки, соединяясь с рибозами соседних нуклеотидов, «сшивают» составные блоки РНК в макромолекулу – полинуклеотид. Так образуется первичная структура РНК.
Вторичная структура – образование двойной цепочки – образуется на некоторых участках молекулы в соответствии с принципом комплементарности азотистых оснований: аденин образует пару с урацилом посредством двойной, а гуанин с цитозином — тройной водородной связи.
В рабочей форме молекула РНК образует также третичную структуру – особое пространственное строение, конформацию.