Где находятся хромосомы? где в клетке находятся хромосомы

О вирусах

Термин «хромосома» изначально был предложен в качестве обозначения структур, свойственных эукариотическим клеткам, однако ученые все чаще упоминают вирусные и бактериальные хромосомы. Состав, функции их практически схожи, поэтому Д. Е. Коряков и И. Ф. Жимулёв считают, что понятие уже давно нужно расширить, и определять хромосому, как структуру, содержащую нуклеиновую кислоту и имеющую функцию хранения, реализации и передачи информации о генах. У эукариот хромосомы содержатся в ядре, а так же пластидах и митохондриях. Прокариоты (безъядерные) также содержат ДНК, однако в клетке нет ядра. У вирусов хромосомы имеют вид молекулы РНК или ДНК, расположенной в капсиде. Независимо от наличия в клетке ядра, в состав хромосом входят органические вещества, ионы металлов и множество других веществ.

48 хромосом у человека. Хромосомные болезни

Хромосомные
болезни, или синдромы — это группа
врожденных патологических состояний,
проявляющихся множественными пороками
развития, различающихся по своей
клинической картине, часто сопровождающихся
тяжелыми нарушениями психического и
соматического развития. Основной дефект
— различные степени интеллектуальной
недостаточности, что может осложняться
нарушениями зрения, слуха, опорно-двигательного
аппарата, более выраженными, чем
интеллектуальный дефект, расстройствами
речи, эмоциональной сферы и поведения.

Диагностические
признаки хромосомных синдромов можно
разделить на три
группы:

неспецифические,
т.е. такие, как выраженная умственная
отсталость,
сочетающаяся с
дисплазиями, врожденными пороками
развития и черепно-лицевыми аномалиями;

признаки,
характерные для отдельных синдромов;

патогномоничные
для конкретного синдрома, например,
специфический плач при синдроме
«кошачьего крика».

Хромосомные
заболевания не подчиняются менделеевским
закономерностям передачи заболевания
потомству и в большинстве случаев
обнаруживаются спорадически, являясь
следствием мутации в половой клетке
одного из родителей.

Хромосомные
болезни могут быть унаследованы, если
мутация имеется во всех клетках
родительского организма.

К
механизмам, лежащим в основе геномных
мутаций, относятся:

нерасхождение
— хромосомы, которые должны были
разделяться во
время клеточного
деления, остаются соединенными и
относятся к одному полюсу;

«анафазное
отставание» — утрата отдельной хромосомы
(моносомия)
может иметь место во время
анафазы, когда одна хромосома может
отстать от остальных;

полиплоидизация
— в каждой клетке геном представлен
более чем
дважды.

Факторы, повышающие риск рождения детей с хромосомными болезнями

Причины
возникновения хромосомных болезней до
настоящего времени недостаточно изучены.
Имеются экспериментальные данные о
влиянии на мутационный процесс таких
факторов, как: действие ионизирующих
излучении, химических веществ, вирусов.
Другими причинами нерасхождения хромосом
могут быть: сезонность, возраст отца и
матери, порядок рождения детей, прием
лекарств во время беременности,
гормональные нарушения, алкоголизм и
др. Не исключается до определенной
степени и генетическое детерминирование
нерасхождения хромосом. Повторим,
однако, что причины образования геномных
и хромосомных мутаций на ранних стадиях
развития зародыша до сих пор окончательно
не раскрыты.

К
биологическим факторам повышения риска
рождения детей с хро­мосомными
аномалиями может быть отнесен возраст
матери. Риск рождения больного ребенка
особенно резко возрастает после 35 лет.
Это характерно для любых хромосомных
болезней, но наиболее четко наблюдается
для болезни Дауна.

В
медико-генетическом планировании
беременности особое значение уделяется
двум факторам — наличию анеуплоидии
по аутосомам у ребенка и возрасту матери
старше 35 лет.

К
кариотипическим факторам риска у
супружеских пар относятся: анеуплоидия
(чаще в мозаичной форме), робертсоновские
транслокации (слияние двух телоцентрических
хромосом в области деления) кольцевые
хромосомы, инверсии. Степень повышения
риска зависит от типа хромосомных
нарушений.

Синдром
Дауна (трисомия по 21 паре хромосом)

Причина: Нерасхождение
21 пары аутосом, транслокация 21 аутосомы
на аутосому группы D
или G.
У 94% кариотип — 47 хромосом. Частота
проявления синдрома увеличивается с
возрастом матери.

Клиника: Признаки,
позволяющие диагностировать заболевание,
в типичных случаях выявляются на самых
ранних этапах жизни ребенка. Малый рост
ребенка, маленькая круглая голова со
скошенным затылком, своеобразное лицо
— бедная мимика, косой разрез глаз со
складкой у внутреннего угла, нос с
широкой плоской переносицей, маленькие
деформированные ушные раковины. Рот
обычно полуоткрыт, язык толстый,
неповоротливый, нижняя челюсть иногда
выступает вперед. На щеках часто
отмечается сухая экзема. Обнаруживается
укорочение конечностей, особенно в
дистальных отделах. Кисть плоская,
пальцы рук широкие, короткие. В физическом
развитии отстают, однако не резко, но
нервно-психическое развитие замедленно
(плохо развита речь). С возрастом
выявляется ряд новых черт заболевания.
Голос грубеет, отмечается близорукость,
косоглазие, конъюнктивиты, неправильный
рост зубов, кариес.Слабо развита иммунная
система, инфекционные заболевания
протекают крайне тяжело и в 15 раз чаще,
чем у других детей. Встречается острый
лейкоз.

Число хромосом и их видовое постоянство. Соматические и половые клетки

У многоклеточных организмов клетки подразделяются на два вида:

  1. соматические;
  2. половые.

Соматическими называют все клетки тела, которые образуются в результате митоза.

Для этих клеток характерным признаком является наличие постоянного числа хромосом. Для каждого вида организмов их количество строго определено. Человек имеет 23 пары хромосом. 

Набор хромосом соматических клеток называется диплоидным (двойным). 

Половые же клетки всегда содержат уменьшенный вдвое, гаплоидный (одинарный) набор хромосом. Половые клетки также называются гаметами. 

Совокупность полного набора хромосом, присущая клеткам определённого биологического вида, отдельного организма или линии клеток называется кариотипом. 

Принято считать, что кариотип является видовой характеристикой. Но бывает и так, что он различается у особей одного вида. Пример этого отличающиеся друг от друга половые хромосомы мужских и женских организмов. У Y – хромосомы отсутствуют некоторые аллели (модификационные формы одного и того же гена, расположенные в одинаковых участках гомологичных хромосом), тогда как у Х – хромосомы они есть. Мужчины гетерогаметны, то есть несут и X –и  Y – хромосомы, в то время как женщины гомогаметны, так как их половой набор содержит только X – хромосомы.  Немаловажным фактором являются мутации, которые приводят к различным изменениям кариотипа

Важно отметить, что количество хромосом и уровень организации вида не имеют прямой зависимости. То есть, если вид имеет большое количество хромосом, это не говорит о его высокой организации

Кариотипы диплоидных клеток состоят из пар хромосом, названных гомологичными. Хромосомы одной пары называются гомологичными, они находятся в одинаковых локусах (местах расположения) и несут аллельные гены.  Одну из хромосом организм всегда получает от матери, другую от отца.

В ядрах некоторых соматических клеток количество хромосом может отличаться от их количества в соматических клетках. Встречаются полплоидные клетки, они содержат более одного гаплоидного набора хромосом и называются соответственно три-, тетраплоидные и т.д. Метаболические процессы в полиплоидных клетках протекают в разы интенсивнее. 

Хромосомы человека делятся на две группы: аутосомы (неполовые) и половые хромосомы, также называемые гетерохромосомами. В соматических клетках организма человека содержится 22 пары аутосом, которые являются одинаковыми и для мужчин и для женщин, половых же хромосом всего одна пара, эта пара и определяет пол особи. Различают два вида половых хромосом — X и Y. В половых клетках женщины содержится по две X-хромосомы, а в  половых клетках мужчин две различных хромосомы — X и Y. 

Смотри также:

  • Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот
  • Жизненный цикл клетки: интерфаза и митоз. Митоз – деление соматических клеток. Мейоз. Фазы митоза и мейоза. 
  • Развитие половых клеток у растений и животных. Деление клетки – основа роста, развития и размножения организмов. Роль мейоза и митоза

История открытия хромосом

Первые описания хромосом появились в статьях и книгах разных авторов в 70-х годах XIX века, и приоритет открытия хромосом отдают разным людям. Среди них такие имена, как И. Д. Чистяков (1873), А. Шнейдер (1873), Э. Страсбургер (1875), О. Бючли (1876) и другие. Чаще всего годом открытия хромосом называют 1882 год, а их первооткрывателем — немецкого анатома В. Флеминга, который в своей фундаментальной книге «Zellsubstanz, Kern und Zelltheilung» собрал и упорядочил сведения о них, дополнив результатами собственных исследований. Термин «хромосома» был предложен немецким гистологом Г. Вальдейером в 1888 году. «Хромосома» в буквальном переводе означает «окрашенное тело», поскольку оснóвные красители хорошо связываются хромосомами.

После переоткрытия в 1900 году законов Менделя потребовалось всего один-два года для того, чтобы стало ясно, что хромосомы при мейозе и оплодотворении ведут себя именно так, как это ожидалось от «частиц наследственности». В 1902 году Т. Бовери и в 1902—1903 годах У. Сеттон (Walter Sutton) независимо друг от друга выдвинули гипотезу о генетической роли хромосом.

Экспериментальное подтверждение этих идей было осуществлено в первой четверти XX века американскими учёными Т. Морганом, К. Бриджесом, А. Стёртевантом и Г. Мёллером. Объектом их генетических исследований послужила плодовая мушка D.melanogaster. На основе данных, полученных на дрозофиле, они сформулировали «хромосомную теорию наследственности», согласно которой передача наследственной информации связана с хромосомами, в которых линейно, в определённой последовательности, локализованы гены. Основные положения хромосомной теории наследственности были опубликованы в 1915 году в книге «The mechanism of mendelian heredity» (англ.).

В 1933 году за открытие роли хромосом в наследственности Т. Морган получил Нобелевскую премию по физиологии и медицине.

Гены человека. Геном человека: как это было и как это будет

Завершение расшифровки заняло еще несколько лет и привело почти что к удвоению стоимости всего проекта. Однако уже в 2004 г. было объявлено, что эухроматин прочитан на 99% с общей точностью одна ошибка на 100 000 пар оснований. Количество разрывов уменьшилось в 400 раз. Аккуратность и полнота прочтения стала достаточной для эффективного поиска генов, отвечающих за то или иное наследственное заболевание (например, диабет или рак груди). Практически это означает, что исследователям больше не надо заниматься трудоемким подтверждением последовательностей генов, с которыми они работают, так как можно полностью положиться на определенную и доступную каждому последовательность всего генома.

Химический состав

Исследования продолжались, и во время биохимических и цитохимических экспериментов в 30-50 годах прошлого столетия было установлено, из чего они скомпонованы. Их состав такой:

  1. Основные белки (протамины и гистоны).
  2. ДНК.
  3. Негистонные белки.
  4. Переменные компоненты. В их качестве могут выступать РНК и кислый белок.

Хромосомы сформированы из дезоксирибонуклеопротеидных нитей. Они могут соединяться в пучки. В 1953 году было открыто строение молекулы ДНК и разобран механизм её авторепродукции. Знания, полученные о нуклеиновом коде, послужили основой для возникновения новой науки – генетики. Сейчас мы не только знаем, где в клетке находятся хромосомы, но также имеем представление, из чего они составляются. Когда в обычных бытовых разговорах говорят про наследственный аппарат, то обычно подразумевают одну ДНК, но вы-то теперь знаете, что она является только его составляющей.

Процесс транскрипции

Таким образом, по мере продвижения вдоль ДНК-цепи, фермент точно считывает всю информацию, продолжая процесс, пока вновь не встретит особую последовательность нуклеотидов. Она называется терминатором транскрипкции, и сигнализирует, что РНК-полимераза должна отделиться и от матричной цепи ДНК, и от только что синтезированной мРНК. Сумма областей от промотора до терминатора, включая транскрибируемый участок, называется единицей транскрипции — транскриптоном.По мере того, как РНК-полимераза продвигается вдоль кодогенной цепи, транскрибированные одноцепочечные участки ДНК снова объединяются и принимают вид двойной спирали. Образованная мРНК несет в себе точную копию данных, переписанных с участка ДНК. Нуклеотиды мРНК, кодирующие последовательности аминокислот, группируются по три и носят название кодонов. Каждому кодону мРНК соответствует определенной аминокислоте.

Хромосомы у человека. Строение хромосомы

Выяснив сколько хромосом у человека, рассмотрим основы их строения. Хромосома является палочковидной структурой, которая состоит из двух сестринских хроматид. Они удерживаются центромерой, располагающейся в области первичной перетяжки. Каждая из хроматид строится из хроматиновых петель. Сам хроматин не подвергается репликации, в отличие от ДНК. С началом этого процесса прекращается синтез РНК. При этом хромосомы находятся в организме в двух состояниях:

  • конденсированном (неактивное);
  • деконденсированном (активное).

В зависимости от строения генетики выделяют следующие виды хромосом:

  • телоцентрические;
  • акроцентрические – второе плечо короткое и практически незаметное;
  • субметацентрические – внешне напоминают букву L;
  • метацентрические – плечики равной длины.

Гомологичные хромосомы

Парные хромосомы человека принято называть гомологичными. При зачатии одна хромосома наследуется от отца, вторая – от матери. На гомологичных хромосомах располагаются гены, которые отличаются по строению, однако выполняют одинаковую функцию. Гомологичные хромосомы имеют схожую последовательность нуклеотидов. Такие хромосомы, расположенные в диплоидных клетках, имеют одинаковые гены. Количество наборов гомологичных хромосом обозначается термином «плоидность». В половых клетках она равна одному (1n), в соматических – двум (2n).

Негомологичные хромосомы

Негомологичные хромосомы – это структуры, которые содержат несхожие гены. Данные структурные элементы не подвергаются конъюгации в процессе мейоза. Негомологичные хромосомы независимо друг от друга комбинируются в клетке. Этот факт был доказан в процессе изучения характеристик наследования признаков путем использования прямого цитологического метода.

Необходимые элементы

Хромосома, строение которой относительно несложно, образуется из молекулы ДНК, обладающей большой длиной. Она содержит линейные группы множества генов. Каждая хромосома обладает центромерой и теломерами, точками инициации репликации — это ее необходимые функциональные элементы. Теломеры находятся на кончиках хромосом. За счет них и точек начала репликации (их так же называют сайтами инициации), молекула ДНК может реплицироваться. В центромерах же происходит прикрепление сестринских молекул ДНК к митотическому веретену деления, что позволяет им точно разойтись по дочерним клеткам во время процесса митоза.

Структура

Рассмотрим, какое строение и функции имеют эти уникальные клеточные образования. В состоянии интерфазы их практически не видно. На этой стадии удваивается молекула ДНК и образуется две сестринские хроматиды.

Строение хромосомы можно рассмотреть в момент ее подготовки к митозу или мейозу (делению). Подобные хромосомы называются метафазными, потому что образуются на стадии метафазы, подготовки к делению. До этого момента тельца представляют собой невзрачные тонкие нити темного оттенка, которые называют хроматином.

При переходе в метафазную стадию строение хромосомы меняется: ее образуют две хроматиды, соединенные центромерой так именуется первичная перетяжка. При делении клетки удваивается также количество ДНК. Схематический рисунок напоминает букву Х. Они содержат в составе, кроме ДНК, белки (гистоновые, негистоновые) и рибонуклеиновую кислоту РНК.

Первичная перетяжка разделяет тело клетки (нуклеопротеидной структуры) на два плеча, немного сгибая их. На основе места расположения перетяжки и длины плеч была разработана следующая классификация типов:

  • метацентрические, они же равноплечие, центромера делит клетку ровно пополам,
  • субметацентрические. Плечи не одинаковы, центромера смещена ближе к одному концу,
  • акроцентрические. Центромера сильно смещена и находится почти скраю,
  • телоцентрическая. Одно плечо полностью отсутствует, у людей не встречается.

У некоторых видов имеется вторичная перетяжка, которая может располагаться в разных точках. Она отделяет часть, которая именуется спутником. От первичной отличается тем, что не имеет видимого угла между сегментами. Ее функция заключается в синтезировании РНК на матрице ДНК. У людей встречается в 13, 14, 21 и 15, 21 и 22 парах хромосом. Появление в другой паре несет угрозу тяжёлого заболевания.

Теперь остановимся на том, какую хромосомы выполняют функцию. Благодаря воспроизводству разных типов и-РНК и белков они осуществляют четкий контроль за всеми процессами жизни клетки и организма в целом. Хромосомы в ядре эукариот выполняют функции синтезирования белков из аминокислот, углеводов из неорганических соединений, расщепляют органические вещества до неорганических, хранят и передают наследственную информацию.

Норма для здорового человека

Если верить последней статистике, 1% новорожденных сегодня рождается с отклонениями на физиологическом уровне, когда появляется недостаточное количество хромосом. Эта проблема уже становится глобальной, чем вызывает сильную озабоченность у врачей. У здорового человека (мужчина или женщина) насчитывается 46 хромосом, то есть 23 пары. Интересен тот факт, что до 1996 года у ученых не было сомнений, что пар структурных единиц не 23, а 24. Ошибка была допущена Теофилусом Пейнтером, известным в своем круге ученым. Ее нашли и исправили два других светила — Альберт Леван и Джо-Хин Тьо.

Хромосомы для чего нужны. Хромосомы человека

Интересные факты из мира медицины порой преподносят нам удивительные сюрпризы. Например, знаете ли вы, что такое хромосомы, и как они влияют на человека ?

Предлагаем разобраться в этом вопросе, чтобы раз и навсегда расставить все точки над «i».

Рассматривая семейные фотографии, вы наверняка могли заметить, что члены одного родства похожи друг на друга: дети – на родителей, родители – на бабушек и дедушек. Это сходство передается от поколения к поколению с помощью удивительных механизмов генетической наследственности .

У всех живых организмов, от одноклеточных водорослей до африканских слонов, в ядре клетки находятся хромосомы – тонкие длинные нити, которые можно рассмотреть только в электронный микроскоп.

Хромосо́мы (др.-греч. χρῶμα — цвет и σῶμα — тело) — это нуклеопротеидные структуры в ядре клетки, в которых сосредоточена бо́льшая часть наследственной информации (генов). Они предназначены для хранения этой информации, ее реализации и передачи.

Сколько хромосом у человека

Еще в конце XIX века ученые выяснили, что число хромосом у разных видов не одинаково.

Например, у гороха 14 хромосом, у крысы – 42, а у человека – 46 (то есть 23 пары) . Отсюда возникает соблазн сделать вывод, что чем их больше – тем сложнее существо, обладающее ими. Однако на самом деле это совершенно не так.

Из 23 пар человеческих хромосом 22 пары — аутосомы и одна пара — гоносомы (половые хромосомы). Половые имеют морфологические и структурные (состав генов) различия.

У женского организма пара гоносом содержит две Х-хромосомы (ХХ-пара), а у мужского – по одной Х- и Y-хромосоме (XY-пара).

Именно от того, каков будет состав хромосом двадцать третьей пары (ХХ или XY), зависит пол будущего ребенка. Определяется это при оплодотворении и слиянии женской и мужской половой клетки.

Данный факт может показаться странным, но по числу хромосом человек уступает многим животным. Например, у какой-то несчастной козы 60 хромосом, а у улитки – 80.

Хромосомы состоят из белка и молекулы ДНК (дезоксирибонуклеиновой кислоты), похожей на двойную спираль. В каждой клетке находится около 2 метров ДНК, а всего в клетках нашего организма около 100 млрд. км ДНК.

Интересен факт, что при наличии лишней хромосомы или при отсутствии хотя бы одной из 46, — у человека наблюдается мутация и серьезные отклонения в развитии (болезнь Дауна и т.п.).

Именно в связи с этим научным фактом в народе распространилось «интеллигентное» оскорбление: «У тебя что, лишняя хромосома?».

Теперь вы знаете общую информацию о принципах наследственности. Вообще эта тема очень интересная, хоть и чрезвычайно сложна.

Кстати, вас также может заинтересовать статья о том, почему близнецы похожи друг на друга .

Если вам нравятся интересные факты – подписывайтесь на InteresnyeFakty.org в любой социальной сети. С нами всегда интересно!

Значение

Это элемент клеточного ядра, в котором содержится генетическая информация (ДНК дезоксирибонуклеиновая кислота). Строение хромосом хорошо видно на стадии деления. Они увеличиваются в размере благодаря наличию скрученного хроматина, чётко становится видна форма и структура.

В период отсутствия деления (интерфазы), через микроскоп невозможно рассмотреть мелкие ниточки хроматины, с которых может считываться и реализовываться информация о наследственности. Когда приближается время деления, начинают закручиваться ниточки хроматина. Такая плотная «упаковка» необходима при делении, словно происходит сбор в дорогу чемодана с вещами (в данном случае информацией). Какую функцию выполняют хромосомы. Главным их назначением является:

  • сохранение наследственной информации,
  • передача генетической информации при делении.

Именно на основе этих данных впоследствии строятся органы, мышцы, кости по заранее определённой программе.

Например, если записано в генах, что цвет ваших волос будет чёрным, то он будет именно таким, и никак иначе.

Организм на протяжении жизни считывает заранее прописанную программу.

Набор хромосом в соматических клетках (обычных) у человека составляет 23 пары всего их получается 46.

Внимание! Общая длина цепочки ДНК, содержащейся в ядре одной клетки, составляет 3 метра. А если измерить длину ДНК человеческого организма и вытянуть ее в одну сплошную линию, то можно несколько раз обогнуть экватор

Правило постоянства числа хромосом

Число хромосом и характерные особенности их строения — видовой признак. Это является правилом постоянства числа хромосом. Это число не зависит от степени организации и не всегда указывает на филогенетическую родство. Например, в ядрах всех клеток лошадиной аскариды Paraascaris megalocephala univalenus находится по 2 хромосомы, у мухи-дрозофилы Drosophila melanogaster -по 8, у человека — по 46, а у речного рака Astacus fluviatalis — по 116.

Число хромосом не зависит от степени организации, а также не всегда указывает на филогенетическую родство: одно и то же число может случаться в очень далеких друг от друга форм, а у близких видов — очень отличаться

Однако очень важно, что у представителей одного вида число хромосом в ядрах всех клеток постоянно

Проблемы кариотипа

Нарушения в кариотипе могут быть очень разными. По классификации их можно разделить на хромосомные и геномные:

  • Хромосомные нарушения связаны исключительно со строением отдельных хромосом. Это какие-либо встраивания, перестройки или выпадения как в самих хромосомах, так и между несколькими из них.
  • Геномные нарушения — это ситуация, когда нарушается именно количество хромосом. Как правило, происходит увеличение либо их общего числа, либо числа в одной из пар. В первом случае явление носит название полиплоидия, а во втором — анеуплоидия.

Все мутации, как геномные, так и хромосомные, вызывают изменения во всем организме человека, либо в какой-то его части. Чаще всего мутации имеют негативный характер и ведут к тем или иным заболеваниям.

Полноценно лечить такие заболевания до конца пока не могут, но ученые всего мира исследуют возможности по коррекции генетических болезней и предупреждению появления на свет детей с подобными отклонениями.

Структура

ДНК

Наименьшими структурными компонентами хромосом нуклеопротеидные фибриллы, видны исключительно в электронный микроскоп. Хромосомні нуклеопротеїди — ДНП (дезоксирибонуклеопротеїди) — Состоят из ДНК и белков (преимущественно гистонов).

Нуклеосомы, хромонемы, хроматиды

Молекулы гистонов образуют группы — нуклеосомы. Каждая нуклеосома содержит в себе 8 белковых молекул. Размер нуклеосомы примерно 8 нм. С каждой нуклеосомами связана участок ДНК, спирально оплетает нуклеосому извне. В таком участке ДНК находится 140 нуклеотидов общей длиной 50 нм благодаря спирализации длина сокращается в 5 раз.

В хроматина около 87 — 90% длины ДНК связано с нуклеосомами.

Фибриллы ДНП попарно закручиваются, образуя хромонемы (греч. Chroma + nema — цвет + струна), которые входят в комплексы более высокого порядка — также спирально закрученных напивхроматид. Пара напивхроматид образует хроматиду, а пара хроматид — хромосому.

На разных участках одной хромосомы спирализация, компактность ее основных элементов неодинакова; с этим связана различная интенсивность окраски отдельных участков.

Гетерохроматическом участки

Те участки хромосомы, которые интенсивно воспринимают красители, называют гетерохроматическом (состоят из гетерохроматина) они даже в интерфазе остаются компактными и видимые в оптический микроскоп.

Гетерохроматин выполняет преимущественно структурную функцию. Он находится в интенсивно конденсированном (спирализованому) состоянии и занимает одни и те же участки в гомологичных хромосомах, образует участки, прилегающие к центромеры и концов хромосомы. Потеря гетерохроматиновых участков может и не сказываться на жизнедеятельности клетки.

Выделяют также факультативный гетерохроматин, что возникает при спирализации и инактивации одной из двух гомологичных Х-хромосом у млекопитающих, в результате чего образуются тельца Барра (Х-половой хроматин).

Еухроматични участки

Неокрашенные и менее уплотненные участки хромосомы, которые деконденсуються и становятся невидимыми в период интерфазы, содержащие эухроматин и поэтому называются еухроматичнимы. Считают, что именно в них размещены более генов.

Хромосомы во время деления клетки, в период метафазы, имеют вид нитей, палочек и тому подобное. Строение одной хромосомы на разных участках неодинакова. В хромосоме различают первичную перетяжку и два плеча.

Первичная перетяжка, или центромера — наиболее спирализована часть хромосомы.

На ней размещен кинетохор (гр. Kinesis — движение, phoros — несущий), к которому во время деления клетки крепятся нити веретена деления.

Место расположения центромеры в каждой пары хромосом постоянное, оно обусловливает их форму.

В зависимости от расположения центромеры выделяют три типа хромосом: метацентрическая, субметацентрични и акроцентрические. Метацентрическая хромосомы имеют плечи почти одинаковой длины; в субметацентричних плечи неравные; акроцентрические хромосомы имеют палочковидную форму с очень коротким, почти незаметным вторым плечом.

Могут возникать и телоцентрични хромосомы — как результат отрыва одного плеча, когда центромера расположена на конце хромосомы. В нормальном кариотипе такие хромосомы не встречаются.

Теломеры

Концы плеч хромосомы называют теломерами, это специализированные участки, которые препятствуют соединению хромосом между собой или с их фрагментами. Конец хромосомы, который не имеет теломеры, становится «ненасыщенным», «липким», и легко присоединяет фрагменты хромосом или соединяется с подобными участками. В норме же теломеры сохраняют хромосому как дискретную индивидуальную единицу.

Спутники

Некоторые хромосомы имеют глубокие вторичные перетяжки, отделяющие отдельные участки хромосомы — спутники. Такие хромосомы могут сближаться и образовывать ассоциации, а тонкие нити, которые соединяют спутников с плечами хромосом, при этом участвуют в образовании ядрышек. Именно эти участки в хромосомах человека являются организаторами ядрышек. У человека вторичные перетяжки является на длинном плече 1, 9 и 16 хромосом и на конечных участках коротких плеч 13, 14, 15, 21, 22 хромосом.

В плечах хромосом видны утолщенные и интенсивнее окрашенные участки — хромомеры, которые чередуются с мижхромомернимы нитками. Вследствие этого хромосома может напоминать ряд неравномерно нанизанных бус.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector