Лекция № 6. эукариотическая клетка: цитоплазма, клеточная оболочка, строение и функции клеточных мембран

Строение и функции цитоплазмы. Немембранные органеллы цитоплазмы, их строение и функции.

Цитоплазма, отделенная от окружающей
среды плазмолеммой, включает в себя
основное вещество (матрикс
и гиалоплазма), находящиеся в ней
обязательные клеточ­ные компоненты
– органеллы, а также различные непостоянные
структу­ры – включения.

В электронном микроскопе
матрикс цитоплазмы имеет вид гомогенногоили тонкозернистого вещества
с низкой электронной плотностью. Основное
вещество цитоплазмы заполняет
пространство между плазмалеммой, ядерной
оболочкой и другими внутриклеточными
структурами. Гиалоплазмаявляется
сложной коллоидной системой, включающей
в себя различные биополимеры. Основное
вещество цитоплазмы образует истинную
внутреннюю среду клетки, которая
объединяет все внутриклеточные структуры
и обеспечивает взаимодействие их
друг с другом. В электронном
микроскопе матрикс цитоплазмы имеет
вид гомогенногоили
тонкозернистого вещества с низкой
электронной плотностью. Включает
микротрабекулярную сеть, образованную
тонкими фибриллами толщиной 2-3
нм и пронизывающей всю
цитоплазму. Основное вещество цитоплазмы
следует рассматри­вать так же, как
сложную коллоидную систему, способную
переходить из жидкого состояния в
гелеобразное.

Функции: — объединяет все
клеточные структуры и обеспечивает их
взаимодействие друг с другом. – является
вместилищем для ферментов и АТФ. –
откладываются запасные продукты. –
происходят различные реакции (синтез
белка). – постоянство среды. – является
каркасом.

Включениями называют непостоянные
ком­поненты цитоплазмы, которые служат
запасными питательными ве­ществами,
продуктами, подлежащими выведению из
клетки, балластными веществами.

Органеллы — это постоянные структуры
цитоплазмы, выполняю­щие в клетке
жизненно важные функции.

Немембранные органеллы:

1) Рибосомы
— мелкие тельца грибовидной
формы, в которых идет синтез белка. Они
состоят из рибосомальной РНК и белка,
образующего большую и малую субъединицы.

2) Цитоскелет
— опорно-двигательная
система клетки, включающая не­мембранные
образования, выполняющие как каркас­ную,
так и двигательную функции в клетке.
Эти нитчатые или фибрилляр­ные могут
быстро возникать и так же быстро исчезать.
К этой системе отно­сятся фибриллярные
структуры(5-7нм) и микротрубочки (состоят
из 13 субъединиц).

3) Клеточный центр состоит из центриолей
(длинна 150нм, диаметр 300-500 нм), окруженных
центросферами.

Центриоли состоят из 9 триплетов
микротрубочек. Функции: — образование
нитей митотического веретена деления.
– Обеспечение расхождения сестринских
хроматид в анафазе митоза.

4) Реснички (Ресничка представляет собой
тонкий цилиндрический вырост цитоплаз­мы
с постоянным диаметром 300 нм. Этот вырост
от основания до самой его верхушки
покрыт плазматической мембраной) и
жгутики ( длинна 150 мкм) — это специальные
органеллы движения, встречающиеся в
некоторых клетках различных организмов.

Липиды плазмалеммы

Жидкий бислой липидов, которыми представлена плазматическая мембрана, может быть очень подвижным. Дело в том, что разные молекулы могут из верхнего слоя переходить в нижний и наоборот, то есть структура динамична. Такие переходы имеют свое название в науке — «флип-флоп». Образовалось оно от названия фермента, катализирующего процессы перестройки молекул внутри одного монослоя или из верхнего в нижний и обратно, флипазы.

Количество липидов, которое содержит клеточная плазматическая мембрана, примерно такое же, как число белков. Видовое разнообразие широко. Можно выделить такие основные группы:

  • фосфолипиды;
  • сфингофосполипиды;
  • гликолипиды;
  • холестерол.

К первой группе фосфолипидов относятся такие молекулы, как глицерофосфолипиды и сфингомиелины. Эти молекулы составляют основу бислоя мембраны. Гидрофобные концы соединений направлены внутрь слоя, гидрофильные — наружу. Примеры соединений:

  • фосфатидилхолин;
  • фосфатидилсерин;
  • кардиолипин;
  • фосфатидилинозитол;
  • сфингомиелин;
  • фосфатидилглицерин;
  • фосфатидилэтаноламин.

Для изучения данных молекул применяется способ разрушения слоя мембраны в некоторых частях фосфолипазой — специальным ферментом, катализирующим процесс распада фосфолипидов.

Функции перечисленных соединений следующие:

  1. Обеспечивают общую структуру и строение бислоя плазмалеммы.
  2. Соприкасаются с белками на поверхности и внутри слоя.
  3. Определяют агрегатное состояние, которое будет иметь плазматическая мембрана клетки при различных температурных условиях.
  4. Участвуют в ограниченной проницаемости плазмолеммы для разных молекул.
  5. Формируют разные типы взаимодействий клеточных мембран друг с другом (десмосома, щелевидное пространство, плотный контакт).

Типы транспорта через клеточный барьер

Транспорт через плазматическую мембрану осуществляется несколькими способами, которые объединяет одна общая физическая особенность — закон диффузии веществ.

  1. Пассивный транспорт или диффузия и осмос. Подразумевает свободное перемещение ионов и растворителя через мембрану по градиенту из области с высокой концентрацией в область с низкой. Не требует расхода энергии, так как протекает сам по себе. Так происходит действие натрий-калиевого насоса, смена кислорода и углекислого газа при дыхании, выход глюкозы в кровь и так далее. Очень распространено такое явление, как облегченная диффузия. Данный процесс подразумевает наличие какого-либо вещества-помощника, которое цепляет нужное соединение и протаскивает за собой по белковому каналу или через липидный слой внутрь клетки.
  2. Активный транспорт подразумевает затраты энергии на процессы поглощения и выведения через мембрану. Есть два основных способа: экзоцитоз — выведение молекул и ионов наружу. Эндоцитоз — захватывание и проведение внутрь клетки твердых и жидких частиц. В свою очередь, второй способ активного транспорта включает в себя две разновидности процесса. Фагоцитоз, который заключается в заглатывании везикулой мембраны твердых молекул, веществ, соединений и ионов и проведение их внутрь клетки. При протекании данного процесса образуются крупные везикулы. Пиноцитоз, напротив, заключается в поглощении капелек жидкостей, растворителей и других веществ и проведении их внутрь клетки. Он подразумевает формирование пузырьков малых размеров.

Оба процесса — пиноцитоз и фагоцитоз — играют большую роль не только в осуществлении транспорта соединений и жидкостей, но и в защите клетки от обломков отмерших клеток, микроорганизмов и вредных соединений. Можно сказать, что эти способы активного транспорта также являются и вариантами иммунологической защиты клетки и ее структур от разных опасностей.

Что такое клеточная мембрана

Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает «кожа». Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .

Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.

Строение

Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.

В структуру плазмалеммы входят молекулы:

  • фосфолипидов;
  • гликолипидов;
  • холестерола;
  • белков.

Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.

Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают «своим» выходить за пределы клетки, а «чужим» — проникать внутрь.

Организация плазмалеммы:

  • мембрана состоит из липидов молекулы, которые имеют особое строение;
  • каждый липид имеет два конца — гидрофильная («любящая» воду) головка и гидрофобный («боящийся» воды) хвост;
  • липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри;
  • поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает;
  • в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом;
  • холестерол придает мембране упругость и жесткость;
  • благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.

Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.

Внутри и на поверхности цитолеммы встречаются следующие виды белков:

  1. Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
  2. Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
  3. Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.

Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.

Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.

Месторасположение в клетке

Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.

Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.

Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.

Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.

Строение клетки

Наука, которая изучает строение клетки и её функции, называется цитологией. Несмотря на свои незначительные размеры, данные части организма имеют сложную структуру. Внутри находится полужидкое вещество, именуемое цитоплазмой. Здесь проходят все жизненно важные процессы и располагаются составляющие части – органоиды. Узнать об их особенностях Вы сможете далее.

Ядро

Самой важной частью является ядро. От цитоплазмы его отделяет оболочка, которая состоит из двух мембран

В них имеются поры, чтобы вещества могли попадать из ядра в цитоплазму и наоборот. Внутри находится ядерный сок (кариоплазма), в котором располагается ядрышко и хроматин.

Рис. 1. Строение ядра.

Именно ядро управляет жизнедеятельностью клетки и хранит генетическую информацию.

Основу хроматина составляет ДНК, именно в ДНК заключена наследственная информация. Основная функция ядрышек – образование рибосомных РНК и субъединиц будущих рибосом.

Рибосомы

Располагаются на поверхности эндоплазматической сети, при этом делая её поверхность шероховатой. Многие рибосомы свободно располагаются в цитоплазме. К их функциям относится биосинтез белка.

Эндоплазматическая сеть

ЭПС может иметь шероховатую либо гладкую поверхность. Шероховатая поверхность образуется за счёт наличия рибосом на ней.

К функциям ЭПС относится синтез белка и других веществ, их последующая транспортировка. Часть образованных белков, углеводов и жиров по каналам эндоплазматической сети поступает в особые ёмкости для хранения. Называются эти полости аппаратом Гольджи, представлены они в виде стопок «цистерн», которые отделены от цитоплазмы мембраной.

Аппарат Гольджи

Чаще всего располагается вблизи ядра. В данном комплексе хранятся вещества, которые были синтезированы самой клеткой для потребностей всего организма. При необходимости на комплексе образуются везикулы. Это особые пузырьки с веществами, которые транспортируются к поверхности клетки и выделяются за ее пределы.К функциям аппарата Гольджи относятся модификация белков и образование лизосом.

Лизосомы содержат пищеварительные ферменты, которые заключены с помощью мембраны в пузырьки и циркулируют в цитоплазме. Лизосомы служат для внутриклеточного пищеварения. При необходимости могут переварить всю клетку (автолиз).

Митохондрии

Эти органоиды покрыты двойной мембраной:

  • гладкая наружная оболочка;
  • внутренний слой, имеющий складки и выступы – кристы.

Рис. 2. Строение митохондрий.

Функциями митохондрий является дыхание. Митохондрии называют энергетическими станциями клетки, так как внутри них происходит извлечение энергии из питательных веществ. На кристах находятся ферменты, с помощью которых выделяемая энергия запасается в молекулах АТФ. Это вещество является универсальным аккумулятором энергии.

Данные органоиды содержат собственную молекулу ДНК, рибосомы и способны к самостоятельному размножению. Этот факт навёл учёных на мысль, что изначально митохондрии были бактериями и существовали самостоятельно. Спустя время они поселились внутри клеток других организмов. И, спустя много лет, стали органеллами, без которых не обходится ни одна эукариотическая клетка.

Плазматическая мембрана

Цитоплазматическая мембрана отделяет и защищает внутреннее содержимое от внешней среды. Она поддерживает форму, обеспечивает взаимосвязь с другими клетками, обеспечивает процесс обмена веществ. Состоит мембрана из двойного слоя фосфолипидов, в который включены молекулы белков. На поверхности клеточной мембраны у растений, грибов и бактерий расположена клеточная стенка.

Функции клеточной мембраны

Клеточная мембрана обладает целым рядом функций. Погруженные в нее белки выполняют ферментативную функцию. Часто они располагаются в определенной последовательности для того, чтобы продукты катализа последовательно переходили от одной молекулы к другой. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана также выполняет барьерную функцию. Она ограничивает содержимое клетки от окружающей среды, а также транспортную функцию. Цитоплазматическая мембрана обладает высокой степенью прочности и свойством избирательной проницаемости, а также поддерживает постоянство состава внутренней среды организма. Такие многогранные свойства обусловлены необходимостью высокой степени адаптации клеток животных к различным изменениям окружающей среды.

При этом мембранный транспорт может проходить различными способами.

Активный транспорт происходит при наличии в мембране специализированных каналов. Такой вид транспорта протекает против градиента концентрации и с высокими затратами энергии. В нем участвуют белки – переносчики. Эта энергия получается клеткой при распаде молекул АТФ.

Пассивный транспорт протекает в разных концентрациях (из области высокой концентрации в низкую). При этом отсутствуют затраты энергии. Такой путь называют диффузией. Она может быть представлена в облегченном и стандартном видах.

Облегченная диффузия реализуется благодаря специфическим белкам – переносчикам. Это становится возможным благодаря наличию различных белковых конформаций. Как правило, в этом процессе участвует один или несколько белков.

Также существует транспорт веществ внутри клетки, который косвенно зависит от строения цитоплазматической мембраны или от возможности пропускания ею ряда веществ. Такой транспорт также зависит от наличия в ядре специфических отверстий или пор. Через цитоплазму данные вещества могут контактировать с клеточной мембраной, поддерживая обмен веществ в элементарной живой системе.

Также пассивный транспорт осуществляется по белкам – каналам. Они образуют водные поры, которые открыты в какой – либо период времени. По этим каналам белки могут транспортироваться из одной клетки в другую. Периодичность транспортировки обеспечивает точность обмена веществ между клетками.

Также мембрана может выполнять рецепторную функцию. На ее внешней стороне расположены структуры, распознающие химический и физический раздражитель. В основном это гликопротеиды, но могут быть и другие химические вещества.

Также рецепторную функцию клеточных мембран изучают на основе гормонов, а именно инсулина. Инсулин связывается с рецептором гликопротеидом и формируется активация каталитической внутриклеточной части данного белка.

Определение 2

Инсулин – это гормон, повышающий уровень сахара в крови человека и высших животных. Является производным поджелудочной железы.

При этом рецепторная функция цитоплазматической мембраны заключается в том, чтобы распознать соседние однотипные клетки. Внутри ткани существуют межклеточные контакты, которые помогают клеткам обмениваться между собой информацией при наличии синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Таким образом, клеточная мембрана является весьма важной клеточной структурой, которая выполняет многочисленные функции. Она позволяет осуществлять целый ряд межклеточных контактов и передавать информацию между клетками внутри какой – либо живой ткани, органа, целостного живого организма

Свойства и функции

Любая пограничная структура осуществляет защитные и обменные функции. Это касается и всех видов мембран.

Осуществлению данных функций способствуют такие свойства, как:

  • пластичность;
  • высокая способность к восстановлению;
  • полупроницаемость.

Свойство полупроницаемости заключается в том, что одни вещества не пропускаются мембраной, а другие пропускаются свободно. Так осуществляется контролирующая функция мембраны.

Также наружная мембрана обеспечивает связь между клетками за счёт многочисленных выростов и выделения клеящего вещества, заполняющего межклеточное пространство.

Процесс воспроизводства

На протяжении всей жизни организма происходит митоз – так называют процесс деления, состоящий из четырёх стадий:

  1. Профаза. Две центриоли клетки делятся и направляются в противоположные стороны. Одновременно с этим хромосомы образуют пары, а оболочка ядра начинает разрушаться.
  2. Вторая стадия получила название метафазы. Хромосомы располагаются между центриолями, постепенно внешняя оболочка ядра полностью исчезает.
  3. Анафаза является третьей стадией, на протяжении которой продолжается движение центриолей в противоположном друг от друга направлении, а отдельные хромосомы также следуют за центриолями и отодвигаются друг от друга. Начинает сжиматься цитоплазма и вся клетка.
  4. Телофаза – окончательная стадия. Цитоплазма сжимается до тех пор, пока не появятся две одинаковые новые клетки. Формируется новая мембрана вокруг хромосом и появляется одна пара центриолей у каждой новой клетки.

Интересно! Клетки у эпителия делятся быстрее, чем у костной ткани. Все зависит от плотности тканей и других характеристик. Средняя продолжительность жизни основных структурных единиц составляет 10 дней.

Строение клетки

https://youtube.com/watch?v=PcM3WwpayuE

Строение клетки. Строение и функции клетки. Жизнь клетки.

Что такое клеточная мембрана

Поддержание жизнедеятельности клетки и контроль за ее целостностью осуществляет защитная пленка. Изучение мембран, их функционирования необходим для понимания причин возникновения заболеваний и способах лечения. Глубокое изучение клеточных мембран позволит создавать лекарства, снизить смертность и отыскать механизмы борьбы с болезнями внутри организма человека.

Каждая клетка в организме находится в специальной защитной пленке, которая и называется клеточной мембраной. Она выполняет много функций, благодаря которым поддерживается процесс жизнедеятельности клетки.

Строение

Представляет собой тоненькую пленочку разграничивающую прокариоты с внутренней средой. Разглядеть ее можно только в микроскоп. В строение цитоплазматической мембраны входит би слой, который служит основой.

Би слой — это двойная прослойка, состоящая из белков и липидов. Также есть холестерол и гликолипиды, обладают амфипатричностью.

Жировой организм имеет биполярную головку и гидрофильный хвостик. Первая обусловлена боязнью воды, а второй ее поглощением. Группа фосфатов имеет наружное направление от пленки, вторые направлены друг на друга.

Таким образом, происходит формирование биполярного липидного слоя. Липиды обладают высокой активностью, могут перемещаться в своем монослое, редко переходить в другие области.

Полимеры делятся на:

  • наружные;
  • интегральные;
  • пронизывающие плазма лемму.

Первые находятся только на поверхностной части пазухи. Держатся за счет электростатики с биполярными головками липидных элементов. Удерживают питательные ферменты. Интегральные внутри, они встроены в саму структуру оболочки, соединения меняют свое местоположение за счет движения эукариот. Служат своеобразным конвейером, выстроены так, что по ним идут субстраты, продукты реакции. Белковые соединения пронизывающие макрополость имеют свойства образования пор для поступления питательных элементов в организм.

Биологические функции липидов

  1. Энергетическая. В количественном отношении липиды – основной энергетический резерв организма. Они содержатся в клетках в виде жировых капель, служащих «метаболическим топливом». Липиды окисляются в митохондриях до воды и диоксида углерода с образованием большого количества АТФ.

При полном окислении 1 г жиров до углекислого газа и воды выделяется около 39 кДж энергии, что намного больше по сравнению с полным окислением такого же количества углеводов. Это дает возможность животным, впадающим в спячку, расходовать накопленные летом и осенью жировые запасы для поддержания процессов жизнедеятельности в зимний период. Высокое содержание липидов в семенах растений обеспечивает энергией развитие зародыша и проростка, пока он не перейдет к самостоятельному питанию.

  1. Структурная (строительная). Ряд липидов принимает участие в построении клеточных мембран. Типичными мембранными липидами являются фосфолипиды, гликолипиды и холестерин. Интересно, что мембраны совсем не содержат жиров.
  2. Изолирующая (защитная). Жировые отложения в подкожной ткани и вокруг различных органов обладают высокими теплоизолирующими свойствами, благодаря тому, что жиры плохо проводят тепло. У синего кита толщина подкожного жирового слоя превышает 50 см, доходя до 1 м, поэтому он может жить в холодных водах.

Липиды предохраняют внутренние органы от механических повреждений (например, почки человека покрыты жировым слоем, защищающим их от травм, сотрясения при ходьбе и прыжках), так они выполняют роль амортизатора.

Как основной компонент клеточной мембраны липиды изолируют внутреннюю часть клетки от окружающей среды и за счёт гидрофобных свойств обеспечивают образование мембранных потенциалов.

Воск покрывает тонким слоем листья растений, не давая им намокать во время обильных дождей, препятствуя испарению воды в жарком климате.

У водоплавающих птиц и некоторых зверей воски выделяются специальными железами и служат смазкой для перьев и волос, придавая им водоотталкивающие свойства.

Миелиновые липиды в мембранах шванновских клеток образуют оболочку вокруг аксонов нейронов, за счёт этого мембрана поверхности нервной клетки электрически изолируется и импульсы по ней проходят намного быстрее.

  1. Сигнальная (регуляторная). Стероиды, эйкозаноиды и некоторые метаболиты фосфолипидов выполняют сигнальные функции. Они служат в качестве гормонов, медиаторов и вторичных переносчиков (мессенжеров). Половые гормоны и кортикостероиды регулируют процессы развития и размножения, обмена веществ.

Витамины группы D, которые являются производными холестерина, играют важную роль в обмене кальция и фосфора. Другие витамины липидной природы: А, Е, К. Желчные кислоты участвуют в пищеварении: они обеспечивают эмульгирование жиров пищи и всасывание продуктов их расщепления.

  1. Запасающая. Жиры служат источником энергии и воды в клетках. Они хранятся в жировых депо: капли жира внутри клетки, жировые тела насекомых, подкожная клетчатка. При окислении 100 г жиров выделяется 107 мл воды. Благодаря эндогенному образованию воды в пустыне могут жить многие животные, например песчанки и тушканчики. С этим связано накопление жира в горбах верблюда.

Развитие эмбрионов птиц и рептилий в яйце при запасе энергии и воды в виде жира, образуется в результате окисления из запасов в желтке. Киты не могут пить солёную воду, которой они окружены, и полагаются полностью на метаболическую воду.

  1. Другие функции липидов. Отдельные липиды выполняют роль «якоря», удерживающего на мембране белки и другие соединения. Некоторые являются кофакторами, принимающими участие в ферментативных реакциях, например в свёртывании крови или в трансмембранном переносе электронов.

Светочувствительный каротиноид ретиналь играет центральную роль в процессе зрительного восприятия.

Жиры способствуют плавучести водных животных от мельчайших диатомовых водорослей, до китов.

Поскольку некоторые липиды не синтезируются в организме человека, они должны поступать с пищей в виде незаменимых жирных кислот и жирорастворимых витаминов. (рис.) Ненасыщенные жирные кислоты – арахидоновая, линолевая и линоленовая. Линолевая и линоленовая кислоты могут превращаться в арахидоновую за счёт наращивания цепи и, следовательно, являются её заменителями.

Классификация липидов

Классификация липидов – спорный вопрос. Существуют разные типы деления этих веществ: по степени растворимости в воде и другим физико-химическим свойствам, по структурным и биосинтетическим особенностям

Мы не будем рассматривать полной классификации, обратим внимание только на те вещества, которые имеют важнейшее значение в биосистемах

В зависимости от состава липиды классифицируют на несколько групп. Различают простые и сложные липиды. Сложные липиды в отличие от простых имеют дополнительные нелипидные группы.

Название класса липидов Состав и строение липидов
Триглицериды: животные жиры, растительные масла. Сложные эфиры глицерина и остатков ВЖК:

·       стеариновой – C17H35COOH

·       пальмиьтновой – C15H31COOH

·       олеиновой – C17H33COOH

Воска: пчелиный, растительный. Сложные эфиры ВЖК и высокомолекулярных одноатомных кислот.
Стерины (стеролы): холестерол, кортикостерон, тестостерон, эстрадиол. Высокомолекулярные спирты, состоящие из нескольких циклических блоков.
Фосфолипиды. Триглицериды, в молекуле которых одна ВЖК заменена на остаток фосфорной кислоты H3PO4
Липопротеины Соединения липидов с белками.
Гликолипиды Соединения липидов с углеводами.

В настоящее время целесообразно руководствоваться следующей классификацией липидов:

  • ацилглицеролы (нейтральные жиры) – моно-, ди- и триглицериды. Универсальные вещества всех организмов. Они могут вступать во все реакции, свойственные сложным эфирам. Самая значимая из них – реакция омыления. При омылении (гидролизе) из ацетилглицеролов образуется глицерол и соли жирных кислот (мыла). Омыление может быть ферментативным, кислотным или щелочным;
  • диольные липиды;
  • орнито- и лизинолипиды;
  • воски;
  • фосфолипиды (глицерофосфолипиды, сфингофосфолипиды);
  • гликолипиды (гликозилдиацилглицериды, цереброзиды, олиго(поли)гликозилцерамиды, полипренилфосфатсахара);
  • жирные кислоты;
  • эйкозаноиды (простагландины, тромбоксаны, простациклины, лейкотриены);
  • стероиды (стеролы, стериды, стероидные гормоны, желчные кислоты, витамины группы D, кортикостероиды, стероидные гликозиды);
  • терпены.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector