Цитоплазматическая мембрана, ее функции и строение

Что такое клеточная мембрана

Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает «кожа». Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .

Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.

Строение

Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.

В структуру плазмалеммы входят молекулы:

  • фосфолипидов;
  • гликолипидов;
  • холестерола;
  • белков.

Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.

Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают «своим» выходить за пределы клетки, а «чужим» — проникать внутрь.

Организация плазмалеммы:

  • мембрана состоит из липидов молекулы, которые имеют особое строение;
  • каждый липид имеет два конца — гидрофильная («любящая» воду) головка и гидрофобный («боящийся» воды) хвост;
  • липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри;
  • поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает;
  • в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом;
  • холестерол придает мембране упругость и жесткость;
  • благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.

Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.

Внутри и на поверхности цитолеммы встречаются следующие виды белков:

  1. Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
  2. Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
  3. Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.

Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.

Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.

Месторасположение в клетке

Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.

Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.

Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.

Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.

Что такое клеточная мембрана

Клеточная мембрана — это биологическая мембрана, которая отделяет внутреннюю часть клетки от внешней среды. Клеточная мембрана также называется плазматическая мембрана а также цитоплазматическая мембрана, Он избирательно проницаем для таких веществ, как ионы и органические молекулы. Клеточная мембрана поддерживает постоянную среду внутри протоплазмы, контролируя проникновение веществ внутрь и наружу клетки. Это также защищает клетку от окружающей среды.

Структура клеточной мембраны

Структура мембраны описывается моделью жидкостной мозаики. Клеточная мембрана состоит из липидного бислоя со встроенными в него белками. Липидный бислой рассматривается как двумерная жидкость, в которой молекулы липида и белка более или менее легко диффундируют в нем. Образуется при самосборке липидных молекул. Эти липиды являются амфипатическими фосфолипидами. Их гидрофобные «хвостовые» области скрыты от окружающей воды или гидрофильной среды двухслойной структурой. Таким образом, гидрофильные головки взаимодействуют с внутриклеточными / цитозольными или внеклеточными лицами. Благодаря этому образуется непрерывный сферический липидный бислой. Следовательно, гидрофобные взаимодействия рассматриваются как основные движущие силы для образования липидного бислоя.

Структура липидного бислоя предотвращает проникновение полярных растворенных веществ в клетку. Но пассивная диффузия неполярных молекул разрешена. Следовательно, трансмембранные белки функционируют либо как поры, каналы или ворота для диффузии полярных растворенных веществ. Фосфатидилсерин концентрируется на мембране, чтобы создать дополнительный барьер для заряженных молекул.

Мембранные структуры, такие как подосома, кавеола, очаговая адгезия, инвадоподиум и различные типы клеточных соединений, присутствуют в мембране. Это называется «supramembrane”Структуры, которые обеспечивают связь, клеточную адгезию, экзоцитоз и эндоцитоз. Под клеточной мембраной цитоскелет находится в цитоплазме. Цитоскелет обеспечивает леса для закрепления мембранных белков. Подробная схема клеточной мембраны показана на Рисунок 1. 

Рисунок 1: Подробная схема клеточной мембраны

Состав клеточной мембраны

Клеточная мембрана в основном состоит из липидов и белков. В клеточной мембране можно найти три класса амфипатических липидов: фосфолипиды, гликолипиды и стеролы. Фосфолипиды являются наиболее распространенным типом липидов среди них. Холестерин обнаружен диспергированным по всей мембране в клетках животных.

Липосомы найдены ли липидные везикулы в клеточной мембране; они заключены в круглые карманы липидным бислоем. Углеводы можно найти в виде гликопротеинов и гликолипидов. 50% клеточной мембраны состоит из белков. Белки могут быть обнаружены в мембране трех типов: цельные или трансмембранные белки, закрепленные на липидах белки и периферические белки.

Функция клеточной мембраны

Клеточная мембрана физически отделяет цитоплазму от ее внеклеточной среды. Он также закрепляет цитоскелет, обеспечивая форму клетки. С другой стороны, клеточная мембрана прикрепляется к другим клеткам ткани, обеспечивая механическую поддержку клетки.

Клеточная мембрана избирательно проницаема, регулируя постоянную внутреннюю среду для функционирования клетки. Движение через клеточную мембрану может происходить как при пассивной, так и при активной диффузии. Четыре клеточных механизма могут быть идентифицированы в клеточной мембране. Небольшие молекулы, такие как углекислый газ, кислород и ионы, перемещаются через мембрану путем пассивного осмоса и диффузии. Питательные вещества, такие как сахар, аминокислоты и метаболиты, перемещаются пассивно через трансмембранные белковые каналы. Аквапорины являются своего рода белковыми каналами, которые транспортируют воду путем облегченной диффузии. Поглощение молекул в клетку путем их поглощения называется эндоцитозом. Твердые частицы поглощаются фагоцитозом, а небольшие молекулы и ионы поглощаются пиноцитозом. Некоторые непереваренные остатки удаляются из клетки путем инвагинации и образования пузырька. Этот процесс называется экзоцитозом.

Клеточный цикл

Согласно научным источникам, в клеточный цикл входят все периоды развития клетки от момента деления материнской и образования дочерней до гибели (или деления). Клеточный цикл кратко можно охарактеризовать несколькими точными параметрами.

Длительность

Существуют как быстро делящиеся — 12-36 ч (например, кроветворные), так и медленно воспроизводящиеся. Средний цикл, свойственный многим организмам — от 10 до 25 часов.

Фазы клеточного цикла

Жизнь клеточного организма можно разделить на несколько фаз.

Фазы:

  1. Интерфаза, или клеточный рост. В этот период происходит быстрая наработка веществ (ДНК, белков и т. д.) и подготовка к делению. Интерфазу можно условно разделить на подпериоды. Это G1-фаза (начальный рост), S-фаза (репликация ДНК) и G2-фаза (непосредственно подготовка к митозу).
  2. Фаза митоза, или фаза М. Это время жизни также можно разделить на две стадии – кариокинез (деление ядра) и цитокинез (деление цитоплазмы).

Клеточный цикл — высокоорганизованная система.

Регуляция клеточного цикла

Все периоды клеточного цикла регулируются особыми белками — циклин-зависимыми киназами и циклинами. Содержание этих белков варьируется на разных стадиях жизненного цикла. После митотического деления они полностью разрушаются.

Строение

Независимо от того, что ЦПМ (цитоплазматическая мембрана) в любой бактериальной клетке выполняет одни и те же функции, ее строение все же может иметь ряд отличий, в зависимости от группы прокариотов, которые исследуются в каждом конкретном случае.

Структурные отличия имеются между строением плазматической мембраны грамотрицательных бактерий и грамположительных.

Здесь есть необходимость уточнить, что иногда вносится путаница в определение цитоплазматической мембраны и клеточной стенки бактерии.

Именно эти структуры, в случае выявления грамотрицательных микроорганизмов, не реагируют на окраску по Граму, что позволяет провести первоначальную идентификацию бактерий.

Поэтому, говоря о грамотрицательных прокариотах, нужно понимать, что в данном случае исследуется не ЦПМ, а клеточная стенка, хотя эти клеточные структуры и находятся друг с другом в непосредственной близости.

Второе важное отличие строения ЦПМ грамотрицательных бактерий – наличие наружной мембраны. Если взять за основу исследование мембранных конструкций у грамположительных прокариотов, то мембрана у этих бактерий состоит из:

Если взять за основу исследование мембранных конструкций у грамположительных прокариотов, то мембрана у этих бактерий состоит из:

  1. Двух слоев липидов. Липиды – органические жироподобные вещества, которые характеризуются разной степенью водонепроницаемости (гидрофобностью).
  2. В эти два липидных слоя в буквальном смысле вмонтированы белковые молекулы, которые и отвечают за сообщение между внутренним и наружным пространством бактериальной клетки.

Если у грамположительных бактерий есть только одна ЦПМ, то у грамотрицательных прокариот их две.

Внешний слой такой клетки состоит из:

  • самой ЦПМ, которая соприкасается с цитоплазмой;
  • клеточной стенки, которая состоит из муреина;
  • наружной мембраны, которая имеет такую же бисистему липидов с белковыми комплексами.

Сообщение грамотрицательных бактериальных клеток с внешним миром через такую трехступенчатую структуру не дает преимущества этим микроорганизмам на выживание в более суровых условиях. Эти микробы также плохо переносят высокие температуры, среду с повышенной кислотностью и перепадами внешнего давления.

Хотя, безусловно, и среди грамположительных, и среди грамотрицательных прокариотов есть термофильные и барофильные группы бактерий, которые приспособились к выживанию в экстремальных условиях.

Отдельным образованием ЦПМ является мезосома. Это своеобразное впячивание части самой мембраны внутрь клеточного пространства. Мезосомы играют определяющую роль при делении клетки бактерии.

Строение и функции цитоплазмы. Немембранные органеллы цитоплазмы, их строение и функции.

Цитоплазма, отделенная от окружающей
среды плазмолеммой, включает в себя
основное вещество (матрикс
и гиалоплазма), находящиеся в ней
обязательные клеточ­ные компоненты
– органеллы, а также различные непостоянные
структу­ры – включения.

В электронном микроскопе
матрикс цитоплазмы имеет вид гомогенногоили тонкозернистого вещества
с низкой электронной плотностью. Основное
вещество цитоплазмы заполняет
пространство между плазмалеммой, ядерной
оболочкой и другими внутриклеточными
структурами. Гиалоплазмаявляется
сложной коллоидной системой, включающей
в себя различные биополимеры. Основное
вещество цитоплазмы образует истинную
внутреннюю среду клетки, которая
объединяет все внутриклеточные структуры
и обеспечивает взаимодействие их
друг с другом. В электронном
микроскопе матрикс цитоплазмы имеет
вид гомогенногоили
тонкозернистого вещества с низкой
электронной плотностью. Включает
микротрабекулярную сеть, образованную
тонкими фибриллами толщиной 2-3
нм и пронизывающей всю
цитоплазму. Основное вещество цитоплазмы
следует рассматри­вать так же, как
сложную коллоидную систему, способную
переходить из жидкого состояния в
гелеобразное.

Функции: — объединяет все
клеточные структуры и обеспечивает их
взаимодействие друг с другом. – является
вместилищем для ферментов и АТФ. –
откладываются запасные продукты. –
происходят различные реакции (синтез
белка). – постоянство среды. – является
каркасом.

Включениями называют непостоянные
ком­поненты цитоплазмы, которые служат
запасными питательными ве­ществами,
продуктами, подлежащими выведению из
клетки, балластными веществами.

Органеллы — это постоянные структуры
цитоплазмы, выполняю­щие в клетке
жизненно важные функции.

Немембранные органеллы:

1) Рибосомы
— мелкие тельца грибовидной
формы, в которых идет синтез белка. Они
состоят из рибосомальной РНК и белка,
образующего большую и малую субъединицы.

2) Цитоскелет
— опорно-двигательная
система клетки, включающая не­мембранные
образования, выполняющие как каркас­ную,
так и двигательную функции в клетке.
Эти нитчатые или фибрилляр­ные могут
быстро возникать и так же быстро исчезать.
К этой системе отно­сятся фибриллярные
структуры(5-7нм) и микротрубочки (состоят
из 13 субъединиц).

3) Клеточный центр состоит из центриолей
(длинна 150нм, диаметр 300-500 нм), окруженных
центросферами.

Центриоли состоят из 9 триплетов
микротрубочек. Функции: — образование
нитей митотического веретена деления.
– Обеспечение расхождения сестринских
хроматид в анафазе митоза.

4) Реснички (Ресничка представляет собой
тонкий цилиндрический вырост цитоплаз­мы
с постоянным диаметром 300 нм. Этот вырост
от основания до самой его верхушки
покрыт плазматической мембраной) и
жгутики ( длинна 150 мкм) — это специальные
органеллы движения, встречающиеся в
некоторых клетках различных организмов.

Дополнительные структуры прокариот

Как любое живое существо, бактериальная клетка стремится обезопасить себя, создавая различные дополнительные элементы. К поверхностным структурам относятся:

  1. Капсула. Это поверхностный слизистый слой, образующийся вокруг клетки как реакция на окружающую среду. Капсула не только дает бактерии дополнительную защиту, но и может содержать запас питательных веществ «на черный день».
  2. Жгутики. Длинные (длиннее самой клетки) очень тонкие нити, прикрепленные к ЦПМ и стенке, работают моторчиком для свободного перемещения бактерий. Могут располагаться по всей поверхности бактерии или расти пучками по ее краям.
  3. Пили (ворсинки). Они отличаются от жгутиков размерами (тоньше и намного короче). В функции пилей не входит перемещение, но они отвечают за крепление (привязку) бактерий к другим микроорганизмам или поверхностям. Еще пили участвуют в водно-солевом обмене и питательном процессе.
  4. Споры. Это гарантия для микроорганизмов пережить любые неблагоприятные факторы (отсутствие воды или пищи, агрессивная среда). Они образуются внутри бактерий, в основном грамположительных. Однако этот способ обеспечивает только выживание, но не размножение (как в случае грибных спор).

Внутренние дополнительные включения могут быть как активными (хлоросомы фотосинтезирующих клеток), так и пассивными (запасы питания). У бактерий, живущих в воде, есть газовые вакуоли, крохотные пузырьки воздуха, отвечающие за их плавучесть.

Питательные вещества бактерий откладываются в различных гранулах (липиды, волютин). Липиды обеспечивают бактерию запасом углерода, дающим энергию в отсутствии других источников. Волютин (зерна, содержащие полифосфаты), становится источником фосфора, когда в окружающей среде его недостаточно. Запасы волютина тоже могут служить источником энергии, хотя их роль не так значительна. Дополнительными структурами цианобактерий являются запасы азота, для серобактерий – отложения молекулярной серы. Основная характеристика всех включений с запасами «на черный день» – они обязательно изолированы от цитоплазмы и не могут оказывать на клетку воздействие в нормальных условиях. В противном случае может быть передозировка химических элементов и бактерия пострадает.

Структуры бактериальной клетки, как основные, так и дополнительные, четко выполняют свои функции, сохраняя и продлевая ее жизнеспособность. Информация, содержащаяся в РНК и ДНК прокариот, позволяет клетке быстро реагировать на изменение условий существования и принимать необходимые меры для сохранения микроорганизма и успешного выполнения всех функций, заложенных в него природой.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку.

Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются. Рядом с белками находятся аннулярные липиды — они более упорядочены, менее подвижны, имеют в составе более насыщенные жирные кислоты и выделяются из мембраны вместе с белком. Без аннулярных липидов белки мембраны не работают.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, в наружном содержатся преимущественно фосфатидилинозитол, фосфатидилхолин, сфингомиелины и гликолипиды, во внутреннем — фосфатидилсерин, фосфатидилэтаноламин и фосфатидилинозитол. Переход отдельной молекулы из одного слоя в другой затруднён, но может происходить спонтанно, примерно раз в 6 месяцев или с помощью белков-флиппаз и скрамблазы плазматической мембраны. Если в наружном слое появляется фосфатидилсерин, это является сигналом для макрофагов о необходимости уничтожения клетки.

Ядро в безъядерной клетке

Нуклеоид («подобный ядру») – один из важнейших органоидов в прокариотической клетке, выполняющий функции ядра. Он отвечает за хранение и передачу генетического материала. Нуклеоид представляет собой замкнутую в кольцо молекулу ДНК, соответствующую одной хромосоме. Эта кольцевая молекула выглядит как беспорядочное переплетение нитей. Однако, исходя из ее функций (точное распределение генов по дочерним организмам), становится понятно, что хромосома бактерий имеет высокоупорядоченную структуру.

Как правило, постоянной наружной формы эта органелла не имеет, но ее можно легко различить на фоне гелеподобной цитоплазмы в электронный микроскоп. При исследовании с помощью обычного светового микроскопа бактерию необходимо предварительно окрасить, т. к. в естественном состоянии бактерии прозрачны и незаметны на фоне предметного стекла. После специального окрашивания область ядерной вакуоли бактерии становится отчетливо видна.

Молекула ДНК (нуклеоид) состоит из 1,6 х 107 нуклеотидных пар. Нуклеотид – это отдельный «кирпичик», звено, из которого состоят все ядерные нуклеиновые кислоты (ДНК, РНК). Таким образом, нуклеотид только отдельная малая часть нуклеоида. Длина молекулы ДНК в развернутом состоянии может быть в тысячу раз больше, чем длина самой бактериальной клетки.

Некоторые бактериальные клетки содержат дополнительные хранилища наследственной информации – плазмиды. Это внехромосомные генетические элементы, состоящие из двухцепочечных ДНК. Они намного меньше нуклеоида и содержат «всего» 1500–40 000 пар нуклеотидов. В таких плазмидах может находиться до сотни генов. Их существование может быть полностью автономным, хотя в определенных условиях дополнительные гены легко встраиваются в основную цепочку ДНК.

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных, бактериальных и грибных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7—8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погружённые одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

Строение

Итак, что такое плазма лемма?

Представляет собой тоненькую пленочку разграничивающую прокариоты с внутренней средой. Разглядеть ее можно только в микроскоп. В строение цитоплазматической мембраны входит би слой, который служит основой.

Би слой — это двойная прослойка, состоящая из белков и липидов. Также есть холестерол и гликолипиды, обладают амфипатричностью.

Основой строения цитоплазматической мембраны служит би слой

Что это значит?

Жировой организм имеет биполярную головку и гидрофильный хвостик. Первая обусловлена боязнью воды, а второй ее поглощением. Группа фосфатов имеет наружное направление от пленки, вторые направлены друг на друга.

Таким образом, происходит формирование биполярного липидного слоя. Липиды обладают высокой активностью, могут перемещаться в своем монослое, редко переходить в другие области.

Полимеры делятся на:

  • наружные,
  • интегральные,
  • пронизывающие плазма лемму.

Первые находятся только на поверхностной части пазухи. Держатся за счет электростатики с биполярными головками липидных элементов. Удерживают питательные ферменты. Интегральные внутри, они встроены в саму структуру оболочки, соединения меняют свое местоположение за счет движения эукариот. Служат своеобразным конвейером, выстроены так, что по ним идут субстраты, продукты реакции. Белковые соединения пронизывающие макрополость имеют свойства образования пор для поступления питательных элементов в организм.

Барьерная функция

Барьерные функции плазматической мембраны множественные. Она защищает внутреннюю среду клетки со сложившейся концентрацией химических веществ от ее изменения. В растворах происходит процесс диффузии, то есть самостоятельного уравнивания концентрации между средами с разным содержанием в них определенных веществ. Плазмолемма как раз блокирует диффузию путем недопущения тока жидкости и ионов в любых направлениях. Таким образом, мембрана ограничивает цитоплазму с определенной концентрацией электролитов от околоклеточной среды.

Второе проявление барьерной функции плазматической мембраны – это защита от сильных кислых и сильных щелочных сред. Плазмолемма построена таким образом, что гидрофобные концы липидных молекул обращены наружу. Потому она зачастую разграничивает внутриклеточную и внеклеточную среды с разными показателями рН. Это необходимо для клеточной жизнедеятельности.

Морфобиологическая характеристика основных органелл клетки (рибосомы, митохондрии, комплекс Гольджи, лизосомы, эндоплазматический ретикулум).

  1. Рибосомы

  • Строение:
    ультрамикроскопические органеллы,
    округлой или грибовидной формы, состоящие
    из 2х частей – субъединиц. Они не имеют
    мембранного строения и состоят из белка
    и р-РНК. Субъединицы образуются в
    ядрышке. Объединяются вдоль молекулы
    и-РНК в цепочки – полирибосомы – в
    цитоплазме.

  • Функции:
    универсальные органеллы всех клеток
    животных и растений. Находятся в
    цитоплазме в свободном состоянии или
    на мембранах ЭПС; кроме того, что
    содержатся в митохондриях и хлоропластах.
    В рибосомах синтезируются белки по
    принипу матричного синтеза; образуется
    полипептидная цепочка – первичная
    стурктура молекулы белка.

  1. Митохондрии

  • Строение:
    микроскопические органеллы имеющие
    2х мембранное строение. Внешняя мембрана
    – гладкая , внутренняя – обретает
    выросты (кристы). В полужидком веестве
    митохондрии находятся ферменты:
    рибосомы, ДНК, РНК. Размножаются делением.

  • Функции:
    являются дыхательным и энергетическим
    центром клетки.

  1. Комплекс Гольджи

  • Строение:
    микроскопические 1 мембранные органеллы,
    состоящие из цепочки плоских цистерн,
    по краям которых ответвляются трубочки,
    отделяющие мелкие пузырьки. Имеют 2
    полюса: строительный и секреторный.

  • Функции:
    в цистернах накапливаются продукты
    синтеза, распада и вещества, поступившие
    в клетку, а также вещества, которые
    выводятся из клетки. Упакованные в
    пузырьки, они поступают в цитоплазму:
    одни используются, другие выводятся
    наружу. В растительной клетки участвуют
    в построении клеточной стенки.

  1. Лизосомы

  • Строение:
    микроскопические 1 мембранные органеллы,
    округлой формы. Их число зависит от
    жизнедеятельности клетки и ее
    физиологического состояния. В лизосомах
    находятся лизирующие (растворяющие)
    ферменты, синтезированные на рибосомах.
    Обособляются от диктиосом в виде
    пузырьков.

  • Функции:
    переваривание пищи, попавшей в животную
    клетку при фагоцитозе, защитная функция.
    В клетках любых организмов осуществляет
    автолиз (саморастворение органелл,
    особенно в условиях пищевого или
    кислородного голодания. У растений
    органеллы растворяются при образовании
    пробковой ткани, сосудов древесины,
    волокон.

  1. Эндоплазматический ретикулум
    или эндоплазматическая сеть

  • Строение:
    ультрамикроскопическая система мембран,
    образующая трубочки, канальцы, цистерны,
    пузырьки. Строение мембран универсальное
    (как и наружной), вся сеть объединена в
    единое целое с наружной мембраной
    ядерной оболочки и наружной клеточной
    мембраной. Гранулярная ЭПС несет
    рибосомы, а гладкая лишена.

  • Функции:
    обеспечивает транспорт веществ как
    внутри клетки, так и между соседними
    клетками. Делит клетку на отельные
    секции в которых одновременно происходят
    различные физиологические процессы и
    химические реакции. Гранулярная ЭПС
    участвует в синтезе белка. В каналах
    ЭПС молекулы белка приобретают вторичную,
    третичную и четвертичную структуры,
    синтезируются жиры и транспортируется
    АТФ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector